(34.201.11.222) 您好!臺灣時間:2021/02/25 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳宗翰
研究生(外文):wu tsung han
論文名稱:中華白麵條風味及品質之研究
論文名稱(外文):Studies on the flavor and quality of chinese white noodle
指導教授:游銅錫林麗雲林麗雲引用關係
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:160
中文關鍵詞:中華白麵條粉道麵粉調質揮發性成分
外文關鍵詞:Chinese white noodlemill streamstemperingvolatile compounds
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1473
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

本研究中分為五個部分,第一部分主要利用固相微萃取法(Solid Phase Microextraction, SPME)以兩種纖維(CarboxenTM / polydimethylsiloxane; CAR / PDMS及Polydimethylsiloxane / Divinylbenzene; PDMS / DVB)吸附經水煮及麵條細粉兩種處理的中華白麵條,再以氣相層析儀及氣相層析質譜儀進行定性、定量分析,並探討固相微萃取法其吸附纖維對麵條揮發性成分之最適吸附時間和溫度。本實驗從麵條中共鑑定出27種揮發性成分,其中以hexanal的含量最高。CAR / PDMS及PDMS / DVB纖維對水煮麵條之最適吸附時間分別為60分鐘及50分鐘,在麵條細粉中,最適吸附溫度及時間分別為50℃、60分鐘及50℃、50分鐘。

本研究之第二部分以香味專家、消費者及製造者品評描述市售麵條,結果依其氣味將市售麵條分為三種,分別為好味道的麵香味麵條、不好味道的粉臭味麵條及油耗味麵條。三種市售中華白麵條一般成分分析結果,水分及粗蛋白含量並無明顯差異,而最大差異在於其粗脂肪及其脂肪酸含量的差異。在酵素分析結果中,以油耗味麵條之脂氧合酶及過氧化裂解酶活性較高,而脂氧合酶與油脂氧化有關,進而影響麵條之氣味。在氣味分析結果顯示,從三種麵條共分析出47種揮發性成分,而在油耗味麵條中氣味成分之含量皆比其他兩種氣味麵條高,在其組成分中,以hexanal的含量最高。由上述的結果中發現,三種麵條的氣味組成相近,主要差異在於其組成分含量間之差異。

本研究之第三部分是以20個不同粉道麵粉為原料,探討不同粉道麵粉之一般成分及酵素活性,並且比較不同粉道麵粉中灰分與粗脂肪之間及粗脂肪與脂氧合酶之間的相關性。結果顯示,以C4、C6、及C7的平磨粉道麵粉中灰分及粗脂肪含量皆較高,其兩者有正相關;而脂氧合酶活性與粗脂肪的含量也呈現正相關。

本研究之第四部分以三種水質(包括自來水、地下水及去離子水)用來調質小麥,並且分析三種水質中的成分,調質後的小麥,再經由研磨製得麵粉,取此麵粉為原料,進行一般成分分析及酵素活性分析,此外,也進行針對麵粉之物理分析。結果顯示,在三種不同水質分析中,以地下水的總硬度含量最高;在各微量金屬分析方面,三種水質中都無法檢測出鐵、錳、銅及鋅離子;在餘氯分析中,只有自來水含有氯離子的存在。在酵素活性分析方面,脂氧合酶、過氧化裂解酶及過氧化酶皆以地下水調質麵粉有較高活性。在麵糰延展性研究中,麵糰熟成45分鐘及135分鐘,以自來水調質麵粉最高。

本研究之第五部分以三種水質包括(自來水、地下水及去離子水)用來調質小麥,並且分析水質的成分,經由研磨成麵粉,再製成麵條後,以三種水質調質製成麵條為原料,於42℃下儲藏六週,分別在0、1、3及6週中分別取樣,進行喜好性感官品評,並且分析麵條中之一般成分分析及酵素活性。結果顯示,在總硬度、鎂及鈣離子分析中分析中,皆以地下水的含量最高;喜好性品評分析結果中,在色澤上,以儲藏1週之地下水調質麵條有較高之評價;在風味及整體喜好性方面,皆以儲藏6週之去離子水調質麵條有較高之評價。一般成分分析中,水分皆會隨著儲藏時間增加而使麵條中的水分降低。三種水質調質後的麵條在儲藏期間L值並沒有的變化;在酵素分析中,以地下水調質麵條會隨著儲藏期間增長而使脂氧合酶活性有上升的趨勢;在過氧化裂解酶及過氧化酶活性分析中,三種調質後的麵條會隨著儲藏期間增長而使過氧化裂解酶及過氧化酶活性上升。
ABSTRACT

This thesis is consists of five sections. In the first section, Solid phase micro-extraction fibers (CarboxenTM / polydimethylsiloxane; CAR / PDMS and Polydimethylsiloxane / Divinylbenzene; PDMS / DVB) were used to isolate volatile compounds from boiled Chinese white noodle and milled Chinese white noodle to determine the best absorption time and temperature for the absorption of the volatile compounds from noodles. The absorbed volatile compounds were quantified and identified by GC and GC-MS, respectively. Twenty-six volatile compounds were identified from noodles. Hexanal was found to be the predominant volatile compound in both of boiled and milled noodles. The best absorption time for the volatile compounds in boiled noodle by CAR/PDMS and PDMS/DVB solid phase micro-extraction fibers were found to be 60 and 50 minutes, respectively. The best absorption time and temperature for the volatile compounds in milled noodle by the CAR/PDMS and PDMS/DVB solid phase micro-extraction fibers was found to be 50 ℃ for 60 minutes and 50 ℃ for 50 minutes, respectively.

In the second part section, three kinds of Chinese white noodles were purchased from the local market. They were divided into the good flavor noodle, the bad flavor noodle, and rancid noodle by panels. The proxrimate composition of these three noodles did not differ significantly, except the crude lipid content, the composition of fatty acids, and the activity of lipid-related enzymes. From the results of enzyme activity analysis, it was found that the rancid noodle had higher activity of lipoxygenase and hydroperoxide lyase which both reported to close relating to lipid oxidation and formation of rancid type volatile compounds. Forty-seven volatile compounds were identified from the commercial noodles. Most of these volatile compounds were reported to be generated from the lipid oxidation. The highest amount of volatile compounds, especially hexanal was found in the rancid noodle

In the third section, twenty wheat flours from different milled streams were used for comparing the general composition and the activities of the enzymes related to lipid oxidation. The results showed that wheat flours from C4, C6, and C7 had higher content of the crude lipid and ash and higher activities of lipid oxidation related enzymes.

In the fourth section, three kinds of water (i.e., Tap water, underground water, and deionized water) were used to tempering wheat grains and then made into wheat flour. The hardness and the content of various ions were compared. Undergroud water was found to form higher hardness of samples. There were no significant differences among the levels of Fe, Mn, Cu, and Zn ions in different samples. Only tap water could be detected with chlorine residue among three kinds of water used. The wheat flour tempering by underground water contented higher activities in lipoxygenase, hydroperoxide lyase, and peroxidase.

In the fifth section, three kinds of water (i.e., tap water, underground water, and deionized water) were used to temper wheat grains and then made into wheat flours. The flours were used to prepare Chinese white noodles. The noodles were stored at 42℃ for six weeks. The general composition, sensory properties, and the activities of lipid oxidation related enzymes of the stored noodles were analyzed. The results showed that after six weeks’ storage the noodle tempered by deionized water had higher flavor and overall preference. The lipoxygenase activity in the noodle tempered by groundwater was found to increase with the increasing of storage time. Activities of hydroperoxide lyase and peroxidase in the noodles tempered by all three kinds of water used were also found to increase with the increasing of storage time.
目 錄
頁次
封面內頁
簽名頁
授權書 iii
中文摘要 iv
英文摘要 vii
誌謝 x
目錄 xi
圖目錄 xiv
表目錄 xvii

第一章 緒言 1
第二章 文獻回顧 3
2.1 麵條的起緣 3
2.2 麵條的種類 3
2.3 麵條製作之材料 4
2.4 麵條的製作流程 20
2.5 香味成分之分離方法 21
第三章 以固相微萃取法分析中華白麵條揮發性成分分析
摘 要 28
3.1 前言 29
3.2 實驗材料與設備 31
3.3 實驗架構圖 32
3.4 實驗方法 32
3.5 結果與討論 36
3.6 結論 43
第四章 中華白麵條風味及品質之研究
摘 要 44
4.1 前言 46
4.2 實驗材料與設備 47
4.3 實驗架構圖 49
4.4 實驗方法 49
4.5 結果與討論 55
4.6 結論 69
第五章 不同粉道麵粉品質之研究
摘 要 70
5.1 前言 73
5.2 實驗材料與設備 73
5.3 實驗架構圖 75
5.4 實驗方法 75
5.5 結果與討論 78
5.6 結論 90
第六章 不同水質調質對於麵粉品質之研究
摘 要 91
6.1 前言 92
6.2 實驗材料與設備 93
6.3 實驗架構圖 96
6.4 實驗方法 96
6.5 結果與討論 109
6.6 結論 123
第七章 不同水質調質對於麵條風味及品質之研究
摘 要 124
7.1 前言 125
7.2 實驗材料與設備 126
7.3 實驗架構圖 129
7.4 實驗方法 129
7.5 結果與討論 134
7.6 結論 145
第八章 總結 146
參考文獻 148











圖 目 錄
頁次
圖2.1 小麥組成及小麥粒的剖面圖 7
圖2.2 亞麻油酸經脂氧化酶作用產生揮發性成分之機制 10
圖2.3 次亞麻油酸經脂氧化酶作用產生揮發性成分之機
制 11
圖2.4 脂氧化酶作用於多元不飽和脂肪酸及胡蘿蔔素之
氧化機制 13
圖2.5 小麥磨粉的過程 16
圖2.6 小麥潤麥後經剪切、清粉及平磨系統之流程 17
圖2.7 Likens-Nickerson水蒸氣蒸餾溶劑萃取裝置 22
圖2.8 固相微萃取裝置 25
圖2.9 GC及HPLC之萃取步驟及其脫附流程 26
圖3.1 本研究之實驗架構圖 33
圖3.2 比較以CAR / PDMS及PDMS/ DVB纖維吸附水
煮麵條中揮發性成分吸附量及吸附時間之關係圖 37
圖3.3 比較以CAR / PDMS及PDMS / DVB纖維吸附磨
成細粉的麵條之揮發性成分吸附量及吸附溫度之
關係圖 38
圖3.4 比較以CAR / PDMS及PDMS / DVB纖維吸附磨
成細粉的麵條細粉之揮發性成分吸附量及吸附時
間之關係圖 39
圖4.1 本研究之實驗架構圖 50
圖4.2 三種市售中華白麵條之脂氧合酶活性分析比較 62
圖4.3 三種市售中華白麵條之過氧化裂解酶活性比較 63
圖4.4 三種市售中華白麵條之過氧化酶活性比較 64
圖5.1 本研究之實驗架構圖 76
圖5.2 不同粉道麵粉之灰分含量分析 79
圖5.3 不同粉道麵粉之粗脂肪含量分析 80
圖5.4 不同粉道麵粉粗脂肪及灰分之相關性分析 84
圖5.5 不同粉道麵粉脂氧合酶活性之分析 86
圖5.6 不同粉道麵粉脂氧合酶及粗脂肪之相關性分析 87
圖5.7 不同粉道麵粉之過氧化裂解酶活性分析 88
圖5.8 不同粉道麵粉之過氧化酶活性分析 89
圖6.1 本研究之實驗架構圖 97
圖6.2 Farinograph之圖譜 104
圖6.3 Extensigraph之圖譜 106
圖6.4 快速黏度分析儀典型曲線圖 108
圖6.5 以三種水調質小麥研磨成麵粉之脂氧合酶活性分
析 115
圖6.6 以不同水調質麵粉之過氧化裂解酶活性分析 117
圖6.7 以不同水調質麵粉之過氧化酶活性分析 118
圖7.1 本研究之實驗架構圖 131
圖7.2 以不同水調質之麵粉所製備麵條在儲藏期間L值
之分析 138
圖7.3 以不同水調質之麵粉所製備麵條在儲藏期間a值之
分析 139
圖7.4 以不同水調質之麵粉所製備麵條在儲藏期間b值
之分析                 140
圖7.5 以不同水調質之麵粉所製備麵條在儲藏期間脂氧合
酶活性分析 141
圖7.6 以不同水調質之麵粉所製備麵條在儲藏期間過氧
化裂解酶活性之分析 142
圖7.7 以不同水調質之麵粉所製備麵條在儲藏期間過氧
化酶活性之分析 143
表 目 錄
頁次
表2.1 脂氧化酶作用於不飽和脂肪酸所產生的揮發性物
質 12
表2.2 小麥粒中粗脂肪的分佈 15
表3.1 以CAR / PDMS及PDMS / DVB纖維所吸附麵條
揮發性成分含量之比較 41
表4.1 三種市售中華白麵條之喜好性感官品評比較        56
表4.2 三種市售中華白麵條之一般成分分析 57
表4.3 三種市售中華白麵條之脂肪酸組成之分析 59
表4.4 三種市售中華白麵條之色澤比較 60
表4.5 三種市售中華白麵條之揮發性成分 65
表5.1 不同粉道麵粉之脂肪酸組成分析 82
表6.1 三種水中總硬度、鐵、錳、銅、鋅、鎂、鈣離子
及餘氯含量之分析 110
表6.2 三種水調質小麥研磨成麵粉之一般成分分析 111
表6.3 三種水調質小麥研磨成麵粉之色澤分析 113
表6.4 三種水調質小麥研磨成麵粉之脂肪酸組成分析 114
表6.5 三種水調質小麥研磨成麵粉之Farinograph分析 119
表6.6 三種水調質小麥研磨成麵粉之Extensograph分析 121
表6.7 三種水調質小麥研磨成麵粉之成糊分析 122
表7.1 以三種水潤麥後之麵粉製備麵條在儲藏期間之喜
好性官能品評比較 135
表7.2 三種水潤麥後之麵粉製備麵條在儲藏期間之一般
成分分析 137
參考文獻

1. 祁正揚。2000。延壓及小麥麵筋蛋白添加量對米穀粉麵糰流變性質及米麵條品質影響。第20-29頁。國立中興大學食品科學系論文碩士。台中。台灣。
2. 李彥霏。2001。麵粉性質麵糰水分含量與食用膠之添加對麵條性質之影響。第1-12頁。靜宜大學食品營養研究所碩士論文。台中。台灣。
3. 行政院環境保護署環境檢驗所。2000。環境檢測標準NIEA W306.52及NIEA W408.50A。
4. 吳宗沛。1998。淺談冷凍麵條的產製技術(上)。烘焙工業35: 25-27。
5. 李敏雄、王美苓和閔丙宇。1990。甲基酯化方法對脂肪酸分析結果之影響。食品科學 17 (1): 1-10。
6. 吳景陽。1981。小麥麵粉組成之麵包製造及生化特性。食品工業 13 (7): 17-21。
7. 沈瑞良。1985。麵條的複合壓延及切線。烘焙工業26: 57-59。
8. 周清源。2000。中國麵點的演進與發展史。烘焙工業38: 33-36。
9. 施明智。1999。食物學原理。第170-178頁。藝軒圖書出版社。台北。
10.施明智。1986。不同浸漬及磨漿方法對豆漿品質及豆渣功能特性之影響。第30-45頁。國立台灣大學食品科技研究所碩士論文。台北。台灣。
11.唐玉芸。1999。生米麵條、麻糬之製程與其流變性質的探討。第21-26頁。國立中興大學食品科學系論文碩士論文。台中。台灣。
12.張為憲、李敏雄、呂政義、張永和、陳昭雄、孫路西、陳怡宏、張基郁、顏國欽、林志城和林慶文。1995。食品化學。第446-448頁。國立編譯館。台北。台灣。
13.黃寶慧和李茂榮。1996。固相微萃取法。科儀新知18:(2) 58-66。
14.黃敬德和謝有容。1998。固相微萃取技術及應用。化學 54:(4) 311-318。
15.彭秋妹和王家仁。1990。食品官能檢查手冊。第10-26頁。食品工業發展研究所。新竹。台灣。
16.郭封谷。1991。不同添加物對東方式麵條品質之影響。第3-25頁。國立中興大學食品科學系論文碩士。台中。台灣。
17.郭文怡。1991。麵粉的分級及成分特性。烘焙工業35: 45-51。
18.黃宏隆、郭文怡和徐華強。1995。麵條加工技術。第3-19頁。中華穀類食品工業技術研究所。台北。
19.劉厚蘭。2003。山藥、枸杞理化特性之探討及山藥枸杞麵條產品之開發。第20-24頁。國立中興大學食品科學系論文碩士。台中。台灣。
20.劉素娥。1990。以不同分離方法所得百香果揮發性成分之比較 香料資訊 2(2):34-36。
21.盧榮錦。1986。麵粉的品質與分析方法。第12-17頁。美國小麥協會發行。台北。台灣。
22.盧訓和林子清。1988。影響麵條品質質地之探討。食品工業 20: 38-41。
23.盧榮錦。1984。小麥製粉函授課程。第1-19頁。美國小麥協會。台北。台灣。
24.賴滋漢和金安兒。1991。食品加工學(製品篇)。第14-18頁。精華出版社。台中。台灣。
25.賴喜美。1996。小麥與麵粉(下)。烘焙工業22: 24-32。
26.賴喜美。1995。小麥與麵粉(上)。烘焙工業12: 49-56。
27.Angerosa, F., Mostallino, R., Basti C and Vito, R. 2000. Virgin olive oil odour notes: relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chem. 68: 283-287.
28.American Association of Cereal Chemists. 1995. Method 56-18b, In Approved Methods of America Association of Cereal Chemist, Association, St. Paul, MN, U.S.A.
29.American Association of Cereal Chemists. 1995. Method 44-19, In Approved Methods of America Association of Cereal Chemist, Association, St. Paul, MN, U.S.A.
30.American Association of Cereal Chemists. 1995. Method 54-21, In Approved Methods of America Association of Cereal Chemist, Association, St. Paul, MN, U.S.A.
31.American Association of Cereal Chemists. 1995. Method 54-10, In Approved Methods of America Association of Cereal Chemist, Association, St. Paul, MN, U.S.A.
33.American Association of Cereal Chemists. 2000. Method 30-10, In Approved Methods of America Association of Cereal Chemist, Association, St. Paul, MN, U.S.A.
34.American Association of Cereal Chemists. 2000. Method 46-30, In Approved Methods of America Association of Cereal Chemist, Association, St. Paul, MN, U.S.A.
35.Arthur, C. L., Killam, L. M., Motlagh, S., Lim, M., Potter, D. W., and Pawliszyn, J. 1992. Analysis of substituted benzene compounds in groundwater using solid-phase microextraction. Environ. Sci. Technol. 26: 979-983.
36.Arai, S., Noguchi, M., Kaji, M., Kato, H., and Fujimaki, M. 1970. n-Hexanal and some volatile alcohols, their dirtribution in raw soybean tissues and formation in crude soy protein concentrate by lipoxygenase. Agric. Biol. Chem. 10: 15-23.
37.Belitz, H. D., and Grosch, W. 1987. Cereal and Cereal Products Food Chemistry, Chap.15. Springer Verlag, NY , U.S.A. p.45-59.
38.Bean, M. M., Nimmo, C. C., Fullington, J. G., Keagy, P. M., and Mecham, D. K. 1974 . Dried Janpanese Noodles. II. Effect of amylase, protease, Salts and pH on the noodle Doughs. Cereal Chem. 51: 427-433.
39.Blain, J. A., and Todd, J. P. 1955.The lipoxidase activity of wheat. Journal of the Science of Food and Agri. 6: 471-479.
40.Brunton, N. D., Cronin, D. A., Monahan, F. J., and Durcan, R. 2000. A comparison of solid-phase microextraction (SPME) fibres for measurement of hexanal and pentanal in cooked turkey. Food Chem. 68: 339-345.
41.Bushuk, W. and Lukow, O. M. 1987. Effect of sprouting on wheat proteins and baking properties. In Proceedings of 4th International Symposium. Pre-harvest sprouting in cereal Westiview Press, Boulder, CO, U.S.A., p.188-196.
42.Cai, J., Liu, B., and Su, Q. 2001. Comparison of simultaneous distillation extraction and solid-phase microextraction for the determination of volatile flavor components. J. Chrom. A. 930: 1-7.
43.Chaoying, F. and Campbell, G. M. 2003. On Predicting Roller Mill
ing Performance V: Effect of Moisture Content on the Particle Size Distribution from First Break Milling of Wheat. J. of Cereal Sci. 37: 31-41.
44.Charley, H. and Wearer, C. 1998. Foods: a scientific approach. Third edition. P.176.
45.Dexter, J. E., Preston, K. R., Tweed, A. R., Killborn, R. H. and Tipples, K. H. 1985. Relationship of flour starch damage and flour protein to the quality of Brazilian-style hearth bread and remix pan bread product from hard red spring wheat. Cereal Food World. 30: 511-514.
46.Dexter, J. E., Matsuo, R. R. and Dronzek, B. L. 1979. A scanning electron microscopy study of Japanese noodles. Cereal Chem. 56: 202.
47.Ekstrand, B., Gangby, I., Akeson, G., Stollman, U., Lingnert, H. and Dahl, S. 1993. Lipase activity and development of rancidity in oats and oat products related to heat treatment during processing. J. of Cereal Sci. 17: 247-254.
48.Evers, A. D. and Redman, D. G. 1973. The location of proteolytic enzyme in developing grains of wheat. Chemical Industry (London) 2: 90-91.
49.Farmer, J. W., Hume, A. and Burt, J. K. 1973. Review of isolation and concentration technique. Chem. Ind. 279. In progress in flavor research. (Lund, D.G. and Nursten, H.E. eds.) Applied Science Publisher, England. p.79.
50.Fernando, L. N., Berg, E P. and Grün, I. U. 2003. Quantitation of hexanal by automated SPME for studying dietary influences on the oxidation of pork. J. of Food Composition and Analysis 16: 178-188.
51.Finney K. F., and Shogren M. D. 1972. A ten grams mixograph for determining and predicting functional properties of wheat flour. Baker’s Dig. 46: 32-48.
52.Fritsch, C. W., Gale, J. A., 1977. Hexanal as a measure of rancidity in low fat foods. J. of American Oil Chemistry Society 54: 225-228.
53.Frazier, P. J., Leigh-Dugmore, F. A., Daniels, N. W. R., Ressell Eggitt, P. W., and Coppock, J. B. M. 1973. The effect of lipoxygenase action on the mechanical development of wheat flour doughs. J. Sci. Food Agric. 24: 421-436.
54.Garcia, E. M., Ansorena, D., Astiasaran, I., and Ruiz, J. 2004. Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME). Talanta, 64: 458-466.
55.George . A. and Burdock., E. 2002. Fenaroli's Handbook of flavor ingredients. 4-th., CRC press.
56.Grimm, C. C., Bergman, C., Delgado, J. T. and Bryant, R. 2001. Screening for 2-acetyl-1-pyrroline in the headspace of rice using SPME / GC-MS. J. Agri. Food Chem. 49: 245-249.
57.Górecki, T., Yu, X. and Pawliszyn, J. 1999. Theory of analyte extraction by selected porous polymer SPME fibres. Analyst. 124: 643-649.
58.Heiniö, R. L., Lehtinen, P., Oksman-Caldentey, K. M. and Poutanen, K. 2002. Difference between sensory profiles and development of rancidity during long-term storage of native and processed oat. Cereal Chem. 79: 367-385.
59.Hildebrand, D. F. 1989. Lipoxygenase. Physiology Plant 76: 249-264.
60.Honold, G. R. and Stahmann, M. A. 1968.The oxidation-reduction
enzymes of wheat. IV. Qualitative and quantitative investigation of the oxidases. Cereal Chem. 45: 99-108.
61.Hoseney, R. C. 1990. Principle of Cereal Science and Technology, American Association of Cereal Chemists Inc. St. Paul, MN, U.S.A. p.136-137.
62.Hildebrand, D. F. 1989. Lipoxygenase, Physiol. Plant. 76: 249-264.
63.Hoseney, R. C., and Seib, P. A. 1978. Bread: from grain to table. Cereal Foods World. 23: 362-369.
64. Hoseney, R. C. 1986. Principle of Cereal Science and Technology, American Association of Cereal Chemists Inc. St. Paul, MN, U.S.A. p.327.
65.Hoseney, R. C. 1994. Principle of Cereal Science and Technology, American Association of Cereal Chemists Inc. St. Paul, MN, U.S.A. p.378.
66.Jennings, W. G., and Filsoof, M. 1977. Comparison of sample preparation techniques for gas chromatographic analysis. J. Agric. Food Chem. 25(3): 220.
67.Kataoka, H., Lord, L. H. and Pawliszn, J. 2000. Applications of solid-phase microextraction in food analysis. J. chrom A. 880: 35-62.
68.Kobrehel, K., Laignelet, B. and Feillet, P. 1974. Study of some factors of macaroni brownness. Cereal Chem. 51: 675-684.
69.Kruger, J. E. and Laberge, D. E. 1974b. Changes in peroxidase activity and peroxidease isoenzymes of wheat during germination. Cereal Chem. 51: 578-585.
70.Kruger, J. E. and Tiple, K. H. 1980. Relationships between falling number, amylograph viscosity and α-amylase activity in Canadian wheat. Cereal Research Communications 8: 97-105.
71.Kuo, J. M., Hwang, A. and Yeh, D. B. 1997. Purification, substrate specificity, and products of a Ca2+-stimulating lipoxygenase from sea algae (Ulva lactuca). J. Agric. Food Chem. 45: 2055-2060.
72.Lehto, S., Laakso, S., and Lehtinen, P. 2003. Enzymatic oxidation of hexanal by oat. J. of Cereal Sci. 38: 199-203.
73.Marco, A., Navarro, J. L. and Flore, M., 2004. Volatile compounds of dry-fermented sausages as affected by solid-phase microextraction (SPME). Food Chem. 84: 633-641.
74.Machiel, D. and Istasse, L. 2003. Evaluation of two commercial solid-phase microextraction fibers for the analysis of target aroma compounds in cooked beef meat. Talanta. 61: 529-537.
75.Mexham, K. D. 1978. Lipids. In wheat; Pomerantz, Y., Ed.;American Association of Cereal Chemists, St. Paul, MN, p.393-451.
76.Mecham, K. D. 1978. Lipids. In Wheat; Pomerant, Y., Ed.; American Association of Cereal Chemists: St. Paul, MN, p.393-451.
77.Michael, N. A. 2001. Biochmistry of Foods, 2/E:550-553.
78.Miller, B. S. and Kummerow, F. A. 1948. The disposition of lipase and lipoxidase in baking and the effect of their traction product on consumer acceptability. Cereal Chem. 25: 391-398.
79.Miskelly D. M. 1984. Flour components affecting paste and noodle colour. J. of Cereal Sci. 35: 463-471.
80.Molteberg, E. L., Magnus, E. M., Bjorge, J. M. and Nilsson, A. 1996. Sensory and chemical studies of lipid oxidation in raw and heat-treated oat flours. Cereal Chem. 73: 579-587.
81.Morrison, M. R. and Barnes, P. J. 1983. Distribution of wheat acyl lipids and tocols in mill streams. In lipid in cereal technology . Academic Press, London. p.149-164.
82.Nelson, C.A. and McDonald, C. E. 1977. Properties of wheat flour protein in flour selected millstreams. Cereal chem. 54: 1181-1191.
83.Nursten, H. E. and Sheene, M. R. 1974. Voatile flavour compounds of cooked potato. J. of Sci. Food Agri. 25: 643-663.
84.Oda, M., Yasuda, Y., Okazki, S., Yamanchi, Y. and Yokoyama, Y. 1980. A method of flour quality assessment for Japanese noodles. Cereal Chem. 57: 253-254.
85.Olli, T. V., Anja, L. and Heikki, K. 2000. Development of Rancidity in Wheat Germ Analyzed by Headspace Gas Chromatography and Sensory Analysis. J. Agric. Food chem. 48: 3522-3527.
86.Oliveira, A. M. D., Pereira, R. N., Jr, A. M. and Augusto, F. 2004. Studies on the aroma of cupuasu liquor by headspace solid-phase microextraction and gas chromatography. J. Chrom A, 1025: 115-124.
87.Oh, N. H., Seib, P. A., and Chung, D. S. 1985a. Noodle. III. Effects of processing variables on quality characteristics of dry noodle. Cereal Chem. 62(6): 441-446.
88.Oh, N. H., Seib, P. A., Deyoe, C. W. and Ward, A. B. 1983a. Noodles. I. Measuring the textural characteristics of cooked noodles. Cereal Chem. 60(6): 433-438.
89.Oh, N. H., Seib. P. A., Deyoe. C.W. and Ward, A. B. 1985b. Noodles.VI. Functional properties of wheat flour components in oriental dry noodles. Cereal Chem. 30(2): 176-178.
90.Oh, N. H., Seib, P. A. and Chung, D. S. 1985b. Noodles. III. Effect of processing variables on quality characteristics of dry noodles. Cereal Chem. 62: 437-440.
91.Oh, N. H., Seib, P. A., Deyoe, C. W. and Ward, A. B. 1985a. Noodles. II. The surface firmness of cooked noodles from soft and hard wheat flours. Cereal Chem. 62: 431-436.
92.Pomeranz, Y. 1988. Wheat: Chemistry and Technology American Association of Cereal Chemist:St. Paul, MN, p.32-35.
93.Prabhasankar, P. and Rao, H. P. 1999. Lipids in wheat flour streams. J. of cereal sci.. 30: 315-322.
94.Rani, K. U., Prasada R. U. J. S., Leelavathi, K., and Haridas, R. P. 2001 Distribution of enzymes in wheat flour mill strams. Cereal chem. 34: 233-242.
95.Rho, K. L., Chung, O. K. and Deyoe C.W. 1988. Noodles.VΙΙ. Investigating the surface firmness of cooked dry noodles made from hard wheat flour. Cereal Chem.65 (4): 320-326.
96.Schomberg, G. and Dielmann, G. 1973. Identification by means of retention parameter. J. Chrom. Sic, 11: 151-159.
97.Senol, Î. 2001. Influence of tempering with ozonated water on the selected properties of wheat flour. J. of food engine. 48: 345-350.
98.Selke, K. and Frankel, E. N. 1987. Dynamic headspace capillary gas chromatographic analysis of soybean oil volatile. J of Agric. Biol. Chem. 64: 749-753.
99.Sinyinda S. and Gramshaw, J. W. 1998. Volatile of avocado fruit. Food Chem. 62: 483-487.
100.Sinyinda, S. and Gramshaw, J. W., 1998. Volatile of avocado fruit. Food Chem. 62: 483-487.
101.Silva-Sanches, A., Rodríguez-Bernaldo de Quirós, A., López-Hernández, J. and Paseiro-Losada, P. 2004. Determination of hexanal as indicator of the lipid oxidation state in potato crisps using gas chromatography and high-performance liquid chromatography. Journal of Chromatography A 1046: 75-81.
102.Sjövall, O., Virtalaine, T., Lapveteläinen, A. and Kallio, H. 2000. Develpoment of rancidity in wheat germ analyzed by headspace gas chromatography and sensory analysis. J. of Agri. and Food Chem. 48: 3522-3527.
103.Surrey, K. 1964. Spectrophotometric method for the determination of lipoxygenase activity. Plant Physiol. 39: 65-69.
104.Toyokawa, H., Rubenthaler, G. L., Power, J. R. and Schanus, E. G. 1989. Japanese noodle qualities. I. Flour components. Cereal chem. 66: 382-386.
105.Urquardt, A. A., Altosaar, I. and Matlashenski, G. J. 1983. Lipase activity in oat grains and milled oat fraction. Cereal Chem. 60: 181-195.
106.Vick, B. A. 1991. A spectrophotometric assay for hydroperoxide lyase. Lipids. 26:315-320.
107.Vas, G. and Vékey, K. 2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrometry. 39: 233-254.
108.Whitaker, J. R. 1994. Lipoxygenase, Principles of enzymology for the Food Science.Marcel Dekker, inc. New York, p.579-593.
109.Wongpornchai, S., Dumri, K., Jongkaewwattana, S. and Siri, B. 2004. Effect of drying methods and storage time on the aroma and milling quality of rice (oryza sativa L.) cv. Khao Dawk Mali 105. Food Chem. 87: 407-414.
110.Zang, Z. and Pawliszyn, J. 1993. Headspace solid-phase microextraction. Anal. Chem. 65: 1843.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔