(3.238.235.155) 您好!臺灣時間:2021/05/16 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張石平
研究生(外文):shih-ping chang
論文名稱:具層間滑移之層間應力連續理論的積層板分析
論文名稱(外文):Analysis of Composite Laminates Using Interlaminar Stress Continuity Theory with Interfacial Slip
指導教授:李春穎李春穎引用關係陳志鏗陳志鏗引用關係
指導教授(外文):C. Y. LeeChih-Keng Chen
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:64
中文關鍵詞:層間應力連續理論層間剪應力線性介面滑移
外文關鍵詞:Interlaminar stress continuity theoryInterlaminar shear stressesLinear interfacial slip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
由於複合材料材積層板在厚度方向上強度較差,尤其是在層間介面上。此一強度較弱之介面,常於受力時形成脫層破壞。因此,積層板在層與層間的層間應力,一直是設計分析時最被關注之焦點。本研究即針對此一問題,應用層間應力連續理論,探討積層板在可能存在介面滑移之情形下,其影響各模態共振頻率、積層板層間的應力、層間滑移等現象,以及積層板的模態、頻率與瑕疵所生之位置、大小及滑移嚴重性之關係,提供一以模態參數作為積層板非破壞性檢測之方法。由於此層間應力連續理論其位移場已滿足層間剪應力連續之條件,因此所有在此之橫向層間剪應力分量皆可以直接由材料之組成律求得。本論文中以積層板在不同介面滑移常數、不同角度纖維排列、不同位置產生介面滑移下,探討共振模態頻率之改變情形。數值實例結果驗證本理論之正確性,且介面瑕疵對較高階模態之共振頻率影響較低階模態為大,而瑕疵在節點位置對該模態之共振頻率影響最大。
The composites laminates suffer mostly on the low strength in the thickness direction upon loading. The delamination failure inside the laminate usually occurs on these weak interfaces. Therefore, the interlaminar stresses deserve more attentions in the analysis of composite laminates. This research focuses on developing an interlaminar stress continuity theory to simulate the effect of interfacial slippage on the resonance frequency and modal stress distribution of the composite laminate. In addition, the influences of the slip constant, location and area of the interfacial slip on the dynamic characteristics of the laminate are also studied. This sensitivity study provides a feasibility evaluation for using the modal properties in the non-destructive testing of the defected laminates. Since the derived displacement field of the theory has satisfied the interfacial shear stress continuity, the interlaminar shear stress components can be calculated directly from the constitutive equations. In this thesis, the resonance frequencies and the associated modal shapes of the laminate with different slip constants, stacking sequences and locations of interfacial slip are investigated. The results of the theory are justified by several numerical examples. It is found that the interfacial defect has more influence on the higher modes than the lower ones, whereas the resonance frequency suffers the most lowering as the defect happens to be in the nodal line of the corresponding mode.
目錄

封面內頁 頁次
簽名頁
授權書 iii
中文摘要 v
英文摘要 vi
誌謝 viii
目錄 ix
圖目錄 xi
符號說明 xiv

第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3內容概述 3
第二章 文獻回顧 4
第三章 理論推導 .9
3.1層間應力連續理論推導 .9
3.2應變能 18
3.3動能 21
3.4界面能 23
3.5系統之運動方程式…………………………………...24
3.6有限元方程式推導…………………………………...25
3.7Fortran程式分析……………………………………...25
第四章 數值實例與討論 27
4.1數值實例與驗證 27
4.2不同角度堆疊對二維積層樑共振頻率之影響 28
4.3介面滑移常數對二維積層樑共振頻率模態影響 30
4.4二維積層樑在共振頻率下模態之變化 33
4.5四邊簡支正方形積層版模態分析 41
4.6懸臂長方形積層版模態分析 48
第五章 結論與建議 51
5.1 結論 51
5.2 後續研究方向 52
參考文獻 54
附錄A 此為εx、εy、γxy之矩陣向量 61
附錄B 此為 之矩陣 62
附錄C 此為 之矩陣 63
附錄D 此為 、 之矩陣 64
參考文獻

[1] J. Cantwell, and J. Morton, “The Significance of Damage and Defects and Their Detection in Composite Materials: A Review,” Journal of Strain Analysis, 1992, Vol. 27, No. 1, pp.29-42.
[2] E. Carrera, “A Priori vs A Posteriori Evaluation of Transverse Stresses in Multilayered Orthotropic Plates,” Composite Structures, 2000, Vol.48, pp.245-260.
[3] T. Kant and K. Swaminathan, “Estimation of Transverse/ Interlaminar Stresses in Laminated Composites–Selective Review and Survey of Current Development,” Composite Structures, 2000, Vol.49, pp.65-75.
[4] N. J. Pangano, and S.J. Hatfield, “Elastic Behavior of Multilayered Bidirectional Composite,” AIAA Journal, 1972, Vol. 10, pp.931-933
[5] N. J. Pagano, “Influence of Shear Coupling in Cylindrical Bending of Anisotropic Laminates,” Journal of Composite Materials, 1970, Vol.4, pp.330-343.
[6] R.B. Pipes, “Interlaminar Stresses in Composite Laminates,” Technical Report, 1972, AFML-TR-72-18.
[7] N.J. Pagano, and R.B. Pipe, “The Influence of Staking Sequence on Laminate Strength,” Journal of Composite Materials, 1971, Vol.5, pp.50-57.
[8] S. Tang, “A Boundary Layer Theory–Part I: Laminated Composites in Plane Stress,” Journal of Composite Materials, 1971, Vol. 9, pp. 33-41.
[9] S. Tang and A. Levy, “A Boundary Layer Theory–Part 2: Extension of Laminate Finite Strip,” Journal of Composite Materials, 1975, Vol.9, pp. 42-52
[10] E.F. Rybicki, “Approximate Three-Dimensional Solutions for Symmetric Laminate Under In plane Loading,” Journal of Composite Materials, 1971, Vol.5, pp. 354-360.
[11] R.L. Spilker, and S.C. Chou, “Edge Effects in Symmetric Composite Laminates: Importance of Satisfying the Traction-Free-Edge Condition,” Journal of Composite Materials , 1980 , Vol.14, pp. 2-19.
[12] A.S. Wang, and F.W. Crossman, “Edge Effects on Laterally Thermally Induced Stresses in Composite Laminates,” Journal of Composite Materials, 1977, Vol.11, pp.300-312.
[13] A.S. Wang, and F.W. Crossman, “Some New Results on Edge Effect in Symmetric Composite Laminates,” Journal of Composite Materials, 1977 , Vol.11, pp.92-106.
[14] C.T. Herakovich, A. Nagarkar, and O.D.A. Brien, “Failure Analysis of Composite Laminates with Free Edge, Modern Development in Composite Materials and Structures,” in Vinson, J. R. Ed., American Society of Mechanical Engineers , 1979 pp.53-66.
[15] I. S. Raju, and J. H. Jr. Crew, “Interlaminar Stress Singularities at a Straight Free Edge in Composite Laminates,” Computers and Structures, 1981, Vol.14, pp.21-28.
[16] I. S. Raju, J. D. Whitcomb, and J. G. Goree, “A New Look at Numerical Analysis of Free-Edge Stresses in Composite Laminates,” 1980, NASA TP-1751
[17] R. B. Pipes, B. E. Kaminski, and N. J. Pagano, “The Influence of the Free-Edge upon the Strength of Angle-Ply Laminates,” ASME STR-521, The Test Methods for High Modules Fibers and Composites, 1972, pp.218-228.
[18] C. Kassapoglou, and P. A. Lagace, “Closed Form Solutions for the Interlaminar Stress Field in Angle-Ply and Cross-Ply Laminates,” Journal of Composite Materials, 1987, Vol.21, pp.292-308.
[19] P. R. Heyliger, and J. N. Reddy, “Reduction of Free-Edge Stress Concentration,” Journal of Applied Mechanics, 1985, Vol.52, pp.801-805.
[20] W. E. Howard, T. Gossard, and R. M. Jones, “Composite Laminate Free-Edge Reinforcement with U-Shape Caps, Part I: Stress Analysis,” 1989, AIAA Journal, pp.610-616.
[21] R.B. Pipes, B.E. Kaminski, and N.J. Pagano, “The Influence of the Free-Edge upon the Strength of Angle-Ply Laminates,” ASME STR-521, The Test Methods for High Modules Fibers and Composites, 1972, pp.218-228.
[22] G. Isakson, and A. Levy, “Finite Element Analysis of Interlaminar Shear in Fibrous Composite”. Journal of Composite Materirals , 1971,Vol.5, pp. 273-276.
[23] A. Levy, H. Armen, and J. Whiteside, “Elastic and Plastic Interlaminar Shear Deformation in Laminated Composite Under Generalized Plane Stress.” 3rd Air Force Conference on Matrix Methods in Structure Mechanics, Wright-Patterson Air Force Base, Ohio, 1971.
[24] C.T. Herakovich, and E.W.O.Jr. Brooks, “Tensile Methods for Advanced Composite Reinforced Materials,” Final Report, VPI & SU, VPI-E-73-5, 1973.
[25] R. L. Foye, and D. J. Barker, “Design /Analysis Methods for Advanced Composite Structure.” Technical Report, 1971, AFML – TR – 70 – 299.
[26] Rybicki, E. F, “Approximate Three-Dimensional Solutions for Symmetric Laminate Under Inplane Loading”. Journal of Composite Materials 1971, Vol.5, pp. 354-360.
[27] J.N. Reddy, and C.F. Liu, “A Higher-Order Theory for Geometrically Nonlinear Analysis of Composite Laminates,” 1987, NASA Contractor Report 4056.
[28]J. N. Reddy, Mechanics of Laminated Composite Plates – Theory and Analysis, CRC Press, 1997.
[29] J. N. Reddy, Mechanics of Laminated Composite Plates – Theory and Analysis, CRC Press, 1997.
[30] H. Murakami, “Laminated Composite Plate Theory with Improved In-Plate Response,” Journal of Applied Mechanics, 1986, Vol.53, pp.661-666.
[31] M. DiSciuva, “A General Quadrilateral Multilayered Plate Element with Continuous Interlaminar Stresses,” Computers and Structures, 1993, Vol.47, No.1, pp.91.
[32] C. Y. Lee and D. Liu, “An Interlaminar Stress Continuity Theory for Laminated Composite Analysis,” Computers and Structures, 1992, Vol.42, pp.59-78.
[33] C. Y. Lee and C. H. Shu, “Layer Reduction Technique in the Interlaminar Shear Stress Analysis of Laminated Cylindrical Shells”, The Journal of the Chinese Society of Mechanical Engineers, 1998, Vol.19, No.4, pp.433-439.
[34] C. Y. Lee and J. M. Chen, “Interlaminar Shear Stress Analysis of Composite Laminate with Layer Reduction Technique,” International Journal of Numerical Methods in Engineering, 1996, Vol.39, pp.847-865.
[35] D. Liu, L. Xu, and X. Lu, “Stress Analysis of Imperfect Composite Laminates with an Interlaminar Bonding Theory,” International Journal of Numerical Methods in Engineering, 1994, Vol.37, pp.2819- 2839.
[36] T. O. Williams, and F. L. Addessio, “A General Theory for Laminated Plates with Delaminations,” International Journal of Solids and Structures, 1997, Vol. 34, No. 16, pp.2003-2024.
[37] A. Needleman, “An Analysis of Decohesion along An Imperfect Interface,” International Journal of Fracture, 1990, Vol. 42, pp.21-40
[38] 張石平、李春穎、劉達新,“層間應力連續理論用於脫層積層板之圓柱彎曲分析”,2003,中華民國第二十七屆全國力學會議論文集,論文編號E178。
[39] M. H. Shen, and J. E. Grady, “Free Vibrations of Delaminated Beams,” AIAA Journal, 1992, Vol.30, pp.1361-1370.
[40] P. Crawley, and R. D. Adams, “A Vibration Technique for Nondestructive Testing of Fiber Composite Structures,” Journal of Composite Materials, 1980, Vol.14, pp.161-175.
[41] E.J. Williams, A. Messina, and B.S. Payne, “A Frequency-Change Correlation Approach to Damage Detection,” Proceeding of the 15th International Modal Analysis Conference, Vol. 1, Society of Experimental Mechanics, Bethel, CT, , 1997 , p.p.652-657.
[42] H. Luo, and S. Hanagud, “Delamination Modes in Composite Plates,” Journal of Aerospace Engineering, 1996, Vol.9, pp.106-113.
[43] W. Lestari, and S. Hanagud, “Health Monitoring of Structures: Multiple Delamination Dynamics in Composite,” Proceeding of 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibition, St. Louis, MO. 1999.
[44] R. Thornburg, and A. Chattopadhyay, “Modeling the Behavior of Laminated Composites with Delamination and Matrix Cracks,” AIAA Journal, 2001, Vol.39, pp.153-160.
[45] R. Thornburgh, and A. Chattopadhyay, “Modeling the Dynamic Effects of Delamination in Adaptive Composite Laminate,” AIAA-2002-1443, AIAASDM Conference, Denver. 2002.
[46]M. Cho, and J. S. Kim, “Higher-Order Zig-Zag Theory for Laminated Composites with Multiple Delaminations,” Journal of Applied Mechanics, 2001, Vol.68, pp.869-877.
[47] J.S. Kim and M. Cho, “Buckling Analysis for Delaminated Composites Using Plate Bending Elements Based on Higher-Order Zig-Zag Theory,” International Journal for Numerical Methods in Engineering, 2002, Vol.55, pp.1323-1343.
[48] H.S. Kim, X. Zhou, and A. Chattopadhyay, “Interlaminar Stress Analysis of Shell Structures with Piezoelectric Patch Including Thermal Loading,” AIAA Journal , 2001 , Vol.40, pp.2517-2525.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top