(44.192.112.123) 您好!臺灣時間:2021/03/06 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳信豪
研究生(外文):Hsin-Hao Chen
論文名稱:進口台階對氣輪機靜葉片端壁含複合角膜冷卻孔性能之影響
論文名稱(外文):Effects of an Entrance Step on the Performance of Film-Cooling Holes with Compound Angles at the Endwall of a Gas Turbine Vane
指導教授:吳佩學
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:129
中文關鍵詞:進口台階端壁膜冷卻有效性穩態熱傳液晶熱像法
外文關鍵詞:entrance stependwallfilm cooling effectivenesssteady state heat transfer experiment with liquid crystal thermography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在以往的文獻當中對於葉片熱傳問題的研究,都使用平滑的熱氣流道,因此,邊界層沿著端壁發展至靜葉片前端,再進入葉片之間的通道受壓力分佈的影響形成複雜的三維流。然而實際上從燃燒室到第一級導向葉片之間的燃氣導管設計相當複雜,第一級導向葉片進口與燃氣導管出口處有可能因為材料的熱脹冷縮產生相對移位而使得葉片端壁有個進口台階,此台階大小可能隨氣輪機負載而改變,並且會影響到下游三維流場之發展。
因此本研究將採用穩態熱傳液晶熱像法量測葉片端壁膜冷卻有效性,在葉片端壁上將改變三種不同幾何形狀的膜冷卻孔,固定主流雷諾數,改變吹氣比M=0.5和2.0,並以平滑進口台階為基準,以前向進口台階和背向進口台階模擬燃氣導管之熱膨脹移位。
結果顯示前向進口台階發生會降低膜冷卻有效性;背向進口台階會增加膜冷卻有效性,但是,在靠近吸力面和靠近壓力面有完全相反的膜冷卻發展現象。提昇吹氣比對-4%台階發生時,有增加膜冷卻有效性的結果,但是,對於0%和4%台階發生時,反而造成膜冷卻有效性的降低。複合角條件對於膜冷卻的提昇有不錯的結果,尤其是前向複合角。
In the existing literature for such a problem, all researchers used smooth walls for hot gas passage. Thus, boundary layer developed along the endwalls before reaching the leading edge of the first stage guide vanes. After that, the flow of hot gas is affected by the pressure distribution in the passage between adjacent vanes and forms complex tree-dimensional flow field. In reality, however, the structure of transition nozzle connecting the combustor chamber and the first stage vanes could be very complicated. The matching of the exit of the transition nozzle and the annular endwalls of the vanes may have relative displacement due to thermal expansion of different materials, causing an entrance step for the hot gas entering the vane passages. The size of the entrance step, which may vary with the load of a gas turbine, will influence the three-dimensional flow downstream.
This research will adopt the way of steady state heat transfer experiment with liquid crystal thermography. At the same time, it will use three compound-angle film cooling holes and set Reynolds number. Then, the blow ratio is adjusted to M= 0.5 and 2.0. Placing the no entrance step as the standard, the experiment uses forward entrance step and backward entrance step to represent the displacement of a transition nozzle due to the thermal expansion.
The result shows that when the condition of forward-facing entrance step exists, it will reduce the film cooling effectiveness. On the opposite, when the condition of backward-facing entrance step exists, it will increase the film cooling effectiveness. However, there is totally different phenomenon of film cooling between suction side and pressure side of endwall. When the condition of backward-facing entrance step exists, increasing the blowing ratio will increase the film cooling effectiveness. Yet, when the condition of smooth entrance step and forward-facing entrance step exists, increasing the blowing ratio will reduce the film cooling effectiveness. The condition of compound angle can improve the increasing of film cooling effectiveness greatly, especially the forward-facing compound angle.
封面內頁
簽名頁
授權書 iii
中文摘要 v
英文摘要 vi
誌謝 viiii
目錄 ix
圖目錄 xii
表目錄 xviiii
符號說明 xviii

第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.2.1 葉片近端壁處之外流場 4
1.2.2 葉片近端壁處之熱傳與膜冷卻相關研究 8
1.2.3 複合角對端壁熱傳與膜冷卻之影響 11
1.3 研究目的 18
第二章 膜冷卻之研究方法與理論 28
2.1 膜冷卻作法與參數定義 28
2.2 膜冷卻有效性量測方法與理論 30
2.2.1 穩態液晶量測技術 30
2.2.2 暫態液晶量測技術 31
2.3 研究方法優缺點比較 33
第三章 實驗系統 34
3.1 風洞系統 34
3.2 膜冷卻流體供應系統 35
3.3 影像處理系統與照明取像設備 36
3.4 溫度量測系統 37
3.5 液晶校正系統 37
3.6 測試段設計 41
3.7 數據化約程序 43
第四章 結果與討論 63
4.1 前向複合角對端壁膜冷卻之影響 64
4.2 橫向複合角對端壁膜冷卻之影響 65
4.3 旋轉複合角對端壁膜冷卻之影響 66
4.4 吹氣比對端壁複合角之影響 67
4.5 台階對端壁複合角之影響 67
第五章 結論 129
參考文獻 130
Altorairi, M. S., Candidate, M. S., and Ekkad, S. V., 2003, “Film Cooling from a Row of Inclined Holes in a Tangential Slot,” ME Graduate Student Conference.
Ammari, H. D., Hay, N., and Lampard, D., 1990, “The Effect of Density Ratio on the Heat Transfer Coefficient from a Film Cooled Flat Plate,” ASME Journal of Turbomachinery, Vol.112, pp. 444-450.
Burd, S.W., and Simon, T.W.,1997, “The Influence of Coolant Supply Geometry on Film Coolant Exit Flow and Surface Adiabatic Effectiveness,” ASME Paper No. 97-GT-25
Camci, C., Kim, K., and Hippensteele, S.A., 1992, “A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies,” Journal of Turbomachinery, Vol. 114, pp. 765-775, also AMSE paper 91-GT-122, pp. 1-13.
Chung, J. T., 1992, “Flow and Heat Transfer Experiments in the Turbine Airfoil/Endwall Region,” Ph.D.,Thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN.
Chyu, M. K., 2001, “Heat Transfer Near Turbine Nozzle Endwall,” SCI Paper Vol. 934, pp. 27-36.
Cho, H. H., Kim, B. G., and Rhee, D. H., 2003,“Effects of Hole Geometry on Heat(Mass)Transfer and Film Cooling Effectiveness,” the Korea Science and Engineering Foundation under the grant NO. 95-0200-12-01-3.
Chung, J. T., and Simon, T.W., 1990, “Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Visualization in a Large-Scale Cascade Simulator,” ASME paper 90-WA/HT-4.
Dittmar, J., Schulz, A., and Wittig, S., 2003, “Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments,” ASME Journal of Turbomachinery, Vol. 125, pp. 57-64.
Eriksen, V. L., and Goldstein, R. J., 1974, “Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes,” ASME Journal of Heat Transfer, Vol. 96, pp. 239-245.
Ekkad, S. V., Zapata, D., and Han, J. C., 1997a, “Film Effectiveness Over a Flat Surface with Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method,” ASME Journal of Turbomachinery, Vol. 119, pp. 587-593.
Ekkad, S. V., Zapata, D., and Han, J. C., 1997b, “Heat Transfer Coefficients Over a Flat Surface with Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method,” ASME Journal of Turbomachinery, Vol. 119, pp. 580-586.
Goldstein, R. J., 1971, “Film Cooling” in Advance in Heat Transfer, Academic press, ed. T. F. Irvine, Jr. and J. P. Hartnett, Vol. 7, pp. 321-379.
Goldstein, R. J., and Chen, H. P., 1985, “Film Cooling on a Gas Turbine Blade Near The End Wall,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 107, pp. 117-120.
Goldstein, R.J., and Chen, H.P., 1987, “Film Cooling of a Turbine Blade with Injection Through Two Rows of Holes in the Near-Endwall Region,” ASME Journal of Turbomachinery, Vol. 109, pp. 588-593.
Goldstein, R.J., and Spores, R.A., 1988, “Turbulent Transport on the Endwall in the Region between Adjacent Turbine Blades,” ASME Journal of Heat Transfer, Vol. 110, pp. 862-869.
Goldstein, R. J., 1997, “Film Cooling,” Advance in Heat Transfer, Academic press, ed. T. F. Irvine, Jr. and J. P. Hartnett, Vol. 7, pp. 321-379.
Gritsch, M., Schulz, A., and Wittig, S., 2003, “Effect of Internal Coolant Crossflow in the Effectiveness of Shaped Film-Cooling Holes,” ASME Journal of Turbomachinery, Vol. 125, pp. 547-554.
Goldstein, R. J., and Yoshida, T., 1982, “The Influence of Laminar Boundary Layer and Laminar Injection on Film Cooling Performance,” ASME Journal of Heat Transfer, Vol. 104, pp. 355-362.
Herzig, H. Z., Hansen. A. G., and Costello, G. R., 1954, “Visualization Study of Secondary flow in Cascades,” NACA TN 1163.
Hay, N., Lampard, D., and Saluja, C. L., 1985, “Effect of Cooling Films on the Heat Transfer Coefficient on a Flat Plate with Zero Mainstream Pressure Gradient,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 107, pp. 105-110.
Hale, C. A., Plesniak, M. W., and Ramadhyani, S., 2000, “Film Cooling Effectiveness for short Film Cooling Holes Fed by a Narrow Plenum,” ASME Journal of Turbomachinery, Vol. 122, pp. 553-557.
Ireland, P.T., and Jones, T.V., 1987, “The Response Time of A Surface Thermometer Employing Encapaulated Thermochromic Liquid Crystals,” J. Phys. E: Sci. Instrum, Vol. 20, No. 10, pp. 1195-1199.
Ireland, P. T., Wang, Z., and Jones, T. V., 1995, “Liquid Crystal Heat Transfer Measurements,” Lecture notes, Oxford U., UK.
Kawaike, K., Anzai, S., Takehara, T., Sasada, T., and Matsuzaki, H., 1993, “Advanced Cooling Design of Turbine Blades with Serpentine Cooling Passages,” 20th. International Congress on Combustion Engines, paper G12.
Krishnamoorthy, V., Pai, B. R., and Sukhatme, S. P., 1998, “Influence of Upstream Flow Conditions on the Heat Transfer to nozzle Guide Vanes,” ASME Journal of Turbomachinery, Vol. 110, pp. 412-416.
Kim, Y. J., and Kim, S. M., 2004, “Influence of Shaped Injection Holes on Turbine Blade Leading Edge Film Cooling,” International Journal of Heat Transfer, Vol. 47, pp. 245-256.
Liess, C., 1975, “Experimental Investigation of Film Cooling with Injection From a Row of Holes for the Application to Gas Turbine Blades,” ASME Journal of Engineering for Power. Vol. 97, pp. 21-27.
Ligrani, P. M., Ciriello, S., and Bishop, D. T., 1992, “Heat Transfer, Adiabatic Effectiveness, and Injectant Distributions Downstream of a Single Row and Two Staggered Rows of Compound Angle Film-Cooled Holes,” ASME Journal of Turbomachinery, Vol. 114, pp. 687-700.
Langston, L.S., Nice, M.L., and Hooper, M.R., 1977, “Three-Dimensional Flow Within a Turbine Cascade Passage,” ASME Journal of Engineering for Power, Vol. 99, pp. 21-28.
Ligrani, P. M., Wigle, J. M., Ciriello, S., and Jackson, S. W., 1994a, “Film-Cooling from Holes with Compound Angle Orientations:Part I-Results Downstream of a Two Staggered Rows of Holes with 3d Spanwise Spacing,” ASME Journal of Heat Transfer, Vol. 116, pp. 341-352.
Ligrani, P. M., Wigle, J. M., and Jackson, S. W., 1994b, “Film-Cooling from Holes with Compound Angle Orientations:Part II-Results Downstream of a Single Row of Holes with 6d Spanwise Spacing,” ASME Journal of Heat Transfer, Vol. 116, pp. 353-362.
Moore, J., and Smith, B.L., 1984, “Flow in a Turbine Cascade: Part 2 - Measurement of Flow Trajectories by Ethylene Detection,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 106, pp. 409-413.
Marston, K. C., 1991, “Film Cooling of Gas Turbine Cascade Endwall by Discrete Hole Injection,” M. S. Thesis. Depaz rtment of Mechanical Engineering. University of Minneapolis, MN.
Nasir, H., Ekkad, S. V., and Acharya, S., 2003, “Flat Surface Film Cooling from Cylindrical Holes with Discrete Tabs,” Journal of Thermophysics and Heat Transfer, Vol. 17, No. 3, pp. 304-312.
Rhee, D. H., Lee, Y. S., and Cho, H. H. 2002, “Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes,” ASME Paper No. 02-GT-168 35
Sinha, A. K., Bogard, D. G., and Crawford, M. E., 1991, “Film Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio,” ASME Journal of Turbomachinery, Vol. 113, pp. 442-449.
Sieverding, C.H., 1985, “Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 107, pp. 248-257.
Sen, B., Schmidt, D. L., and Bogard, D. G.., 1996, “Film Cooling with Compound Angle Holes:Heat Transfer,” ASME Journal of Turbomachinery, Vol. 118, pp. 800-806.
Schmidt, D. L., Sen, B., and Bogard, D. G., 1996, “Film Cooling with Compound Angle Holes:Adiabatic Effectiveness,” ASME Journal of Turbomachinery, Vol. 118, pp. 807-813.
Sato, T., Takeishi, K., and Sakon, T., 1986, “Thermal Fatigue Life Prediction of Air-Cooled Gas Turbine Vanes,” Transactions of ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp. 414-420.
Sieverding, C. H., and Van Den Bosche, P., 1983, “The Use of Coloured Smoke to Visualize Secondary Flows in a Turbine-Blade Cascade,” Journal of Engineering for Gas Turbines and Power, Vol. 107, pp. 248-257.
Teekaram, A. J. H., Forth, C. J. P., and Jones, T. V., 1989, “The Use of Foreign Gas to Simulate the Effect of Density Ratios in Film Cooling,” ASME Journal of Turbomachinery, Vol. 111, pp. 57-62.
Takeishi, K., Matsuura, M., Aoki, S., and Sato T., 1989, “An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzle,” ASME Journal of Turbomachinery, Vol. 112, pp. 504-511.
Takeishi, K., Matsuura, M., Aoki, S., and Sato, T., 1990, “An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles,” ASME Journal of Turbomachinery, Vol. 112, pp. 488-496.
Vedula, R. J., Metzger, D. E., 1991, “A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three-temperature Convection Situations,” ASME paper 91-GT-345, pp. 1-9.
Wang, H.P., Olson, S.J., Goldstein., R.J., and Eckert, E.R.G., 1997, Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades,” J. of Turbomachinery, Vol. 119, pp.588-593.
Wu, P. S., Lin, T. Y., and Lai, Y. M., 2001, “Heat Transfer Coefficient Distribution in the Endwall Region of a Vane with a Finite-Step Entrance Condition,” The Third Pacific Symposium on Flow Visualization and Image Processing, Maui, Hawaii, U.S.A, March 18-21, 2001
Wu, P.S. and Chiu, Y.C., “Effects of a Backward-Facing Entrance Step on Heat Transfer and Film Cooling of the Endwall Surface of a Vane Passage,” to be presented at the 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics (Exhft6), April 17-21, 2005, Matsushima, Miyagi, Japan, paper #166.
Yu, Y., and Chyu, M. K., 1998, “Influence of Gap Leakage Downstream of the Injection Holes on Film Cooling Performance,” ASME Journal of Turbomachinery, Vol. 120, pp. 541-560.
Yamamoto, A., Kondo, Y., and Murao, R., 1991, “Cooling-Air Injection into Secondary Flow and Loss Fields within a Linear Turbine Cascade,” ASME Journal of Turbomachinery, Vol. 113, pp. 375-383.
York, W. D., and Leylek, J. H., 2003, “Leading-Edge Film Cooling Physics-Part III:Diffused Hole Effectiveness,” ASME Journal of Turbomachinery, Vol. 125, pp. 252-259.
Yu, Y., Yen, C.-H., Shih, T. I. P., and Gogineni, S., 2002, “Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes,” ASME Journal of Heat Transfer, Vol.124, pp. 820-827.
吳佩學, 林廷祐, 2001, “前向進口台階對第一級導向葉片端壁膜冷卻有效性之影響,” 中國機械工程學會第十八屆全國學術討會論文集,” pp. 521-527.
林廷祐,2002,”前向進口台階對導向葉片端壁區域膜冷卻有效性之影響”,碩士論文,私立大葉大學機械工程研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔