跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/14 03:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪春田
研究生(外文):CHUN-TIEN HUNG
論文名稱:非同調M-ary頻率位移鍵控結合選擇合成分集接收系統於Weibull通道之效能分析研究
論文名稱(外文):Study on the Performance of NC-MFSK with Selective Combining Diversity over Weibull Fading Environments
指導教授:陳雍宗陳雍宗引用關係
指導教授(外文):Joy
學位類別:碩士
校院名稱:大葉大學
系所名稱:電信工程學系碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:63
中文關鍵詞:韋布衰落通道準位跨越率(LCR)平均衰落區間(AFD)NC-MFSKDQPSK
外文關鍵詞:Weibull fading channelLCR (level crossing rates)AFD (average fading duration)NC-MFSKDQPSK
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之研究在於利用數位調變(Digital Modulation)方式和分集(Diversity)合成(Combining)接收系統來改善接收訊號的位元錯誤率(Bit Error Rate , BER),其中,並假設數位調變系統係工作於存在著衰落(Fading)現象的通道中。
  文中針對幾種著名的通道模型作介紹,最後之所以採用韋布分佈(Weibull Distribution)作為本論文研究過程中所架構的衰落通道模型,主要是因為韋布分佈具有足以掌控衰落通道現象的變化特性之參數。另外,也針對幾種常用的分集合成技術作分析,利用通道準位跨越率(Level-Crossing Rate , LCR)和平均衰落區間(Average Fade Duration , AFD)決定出選擇合成(Selection Combining , SC)作為本研究題目的分集合成接收系統;SC是分集合成技術中最簡單而且可靠的一種。最後配合SC合成,選用了非同調M-ary頻率位移鍵控(Non-Coherent M-ary Frequency Shift Keying , NC-MFSK)與差分相位位移鍵控(Differential Quaternary Phase Shift Keying , DQPSK)兩種數位調變方式,並作各種實際傳輸中所可能出現的假設,利用改變不同參數致求得系統架構下之位元錯誤率。
The methods applied to improve the receiver of wireless communication system with digital modulation combines and diversity combining manners are investigated in this thesis.
The channel fading phenomena exist in the modulation schemes are also considered in this study. There are some of the famous and most assumption channel model introduced in my study. The main reason for adopting the Weibull distribution in my study is it has the shape parameter can be applied to characterize the channel fading. On the other hands, the performance of average LCR (level crossing rates) and AFD (average fading durations) for the simplest combining diversity, SC (selection combining), are also evaluated in here.
In fact, in this paper some of the formulas of BER (bit error rate) performance are proposed for the SC diversity with noncoherent MFSK (M-ary frequency shift keying) and DQPSK (difference quaternary phase shift keying) over Weibull fading environments.
封面內頁
簽名頁
授權書.........................iii
中文摘要........................v
英文摘要........................vi
誌謝..........................vii
目錄..........................viii
圖目錄.........................xi
表目錄.........................xiii
符號說明........................xiv

第一章 緒論
1.1 研究背景................ 01
1.2 研究動機................ 08
1.3 論文架構................ 09
第二章 通道特性
2.1 通道雜訊源............... 10
2.1.1大氣雜訊 ............... 11
2.1.2人造雜訊................11
2.1.2.1引起射頻干擾的原因..........12
2.1.3太空雜訊................14
2.2 傳輸通道之衰落成因........... 14
2.2.1反射(Reflection) ...........16
2.2.2繞射(Diffraction) ...........16
2.2.3散射(Scattering) ...........16
2.2.4多重路徑之影響..............17
2.3 衰落通道之分類..............17
2.3.1小尺寸衰落................18
2.3.2大尺寸衰落................18
2.3.3頻率選擇性衰落..............19
2.3.4頻率非選擇性衰落.............19
2.3.5緩慢衰落.................20
2.3.6快速衰落.................20
2.4 通道衰落之克服 ............. .21
第三章 通道模型
3.1 Rayleigh分布模型.............23
3.2 Rice分布模型...............24
3.3 Nakagami分布模型.............26
3.4 Weibull分布模型..............28
3.5 採用Weibull的原因.............30
第四章 分集合成技術
4.1分集合成特性.................32
4.1.1分集(Diversity)的意義..........32
4.1.2合成(Combining)的意義..........33
4.2 最大比率合成接收機.............33
4.3 選擇合成接收機...............36
4.4 等增益合成接收機..............37
4.5 採用選擇合成的原因.............39
第五章 調變方式
5.1 數位調變方式................44
5.2 同調與非同調系統..............45
5.3 NC-MFSK調變................46
5.4 DQPSK調變.................48
第六章 位移鍵控調變系統在韋布通道中之效能分析
6.1 系統架構................ 50
6.2 NC-MFSK系統...............50
6.3 DQPSK系統................54
6.4 數值分析結果 .............. 58
第七章 結論......................60
參考文獻........................61
[1]L. Hui, “Signal Processing Applications in CDMA Communctions”, Artech House, Chap1, 2000.
[2]R. L. Peterson, R. E. Ziemer, D.E. Borth. “Introduction to Spread Spectrum Communications”, Chap 2, Prentice Hall, 1995.
[3]Matthias Pätzold, “Mobile Fading Channels”, Wiley, January, 2002.
[4]S. Bernard “Digital Communications Fundamentals and Applications”, pp. 962-966, Prentice Hall International Inc, 2001.
[5]T. S. Rappaport, “Wireless Communications Principles and Practice”, Prentice Hall PTR, New Jersey, 1996.
[6]B. Sklar, “Rayleigh Fading Channels in Mobile Digital Communication Systems Part 1: Characterization”, IEEE on Commun. Magazine, pp. 90-100, July, 1997.
[7]Yacoub, M. D., “Foundations of Mobile Radio Engineering”, CRC Press Inc, 1993.
[8]Suzuki, H., “A Statistical Model for Urban Radio Propagation”, IEEE trans. on Commun., Vol. 27, No. 4, pp. 657-670,April, 1979.
[9]Nakagami, M., “The m-Distribution – A Formula of Intensity Distribution of Rapid Fading in Statistical Methods in Radio Wave Propagation,” W. G. Hoffman Ed.,Oxford, England: Pergamon Press, 1960.
[10] I. S. Gradshteyn and I. M. Ryzhik, “Table of Integrals, Series, and Products, 5th ed.” New York:Academic, 1994.
[11] K. Bury, “Statistical Distribution in Engineering”, Cambridge, U.K:Cambridge Univ. Press, 1999.
[12] M. Kavehrad and P. J. Mclane, Performance of Low-Complexity Channel Coding and Diversity for Spread Spectrum in Indoor, Wireless Communication, AT&T Technical Journal. Vol. 64, No.8, October 1985.
[13] N. C. Sagias, P. T. Mathiopoulos al., “Selection Diversity Receivers in Weibull fading: Outage Probability and Average Signal-to-Noise Ratio”. Electronics letters, December 2003 vol. 39
[14] N. C. Sagias, and G. K. Karagiannidis, “Performance of Dual Selection Diversity in Correlated Weibull Fading Channel,” IEEE Trans. on Commun., vol. 52, No. 7, July. 2004.
[15] Joy Iong-Zong Chen, “On the Average LCR and AFD of the MRC and SC Diversity over Weibull Fading Environments”, CIE Trans. on commun., submitted for publication, 2004.
[16] F. Adachi, M. T. Feeney, and J. D. Parson, “Effects of Correlated Fading on Level Crossing Rates and Average Fade Durations with Predetection Diversity Reception”, Proc. Inst. Eng., vol. 135, pp 11-17, Feb. 1988.
[17] W. C. Y. Lee, “Level Crossing Rates of an Equal-Gain Predetection Diversity Combiner,” IEEE Trans. on Commun. Technol., vol. COM-18, pp.417-426, Aug. 1970.
[18] Cyril-Daniel Iskander, and P. Takis Mathiopoulos, “Analytical Level Crossing Rates and Average Fade Durations for Diversity Techniques in Nakagami Fading Channels” IEEE Trans. on Commun., vol. 50, No. 8, August 2002
[19] W. C. Jakes, “Microwave Mobile Communications”. New York: Wiley, 1974.
[20] N. Youssef, T. Munakata, and M. Takeda, “Fade Statistics in Nakagami Fading Environments,” in Proc. IEEE 4th Int. Symp. on Spread Spectrum Techniques and Applications, Mainz, Germany, Sept. 1996, pp. 1244-1247.
[21] I. S. Gradsheyn and I. M. Ryzhik, “Table of Integrals”, Series, and Products, 6th ed. New York:Academic, 2000.
[22] John G. Proakis, “Digital Communications”, 4th Edition, McGraw-Hill, 2001.
[23] J. Paul, Crepeau, “Uncoded and Coded Performance of MFSK and DPSK in Nakagami Fading Channel”, IEEE Trans. on Commun.,vol. 40, No. 3, pp. 487-493, March 1992
[24] T. T. Tjhung, Chun Loo al,, “BER Performance of DQPSK in Slow Rician Fading”, Electronics letters August 1992 vol. 28 No 18
[25] K. Bury, “Statical Distributions in Engineering”, Cambridge University Press, 1999.
[26] I. S. Gradshteyn, I. M. Ryzhik, and A. Jeffrey, “Table of Integrals, Series, and Products”, 5th, Academic Press Limited, 1994
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top