跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃詩詠
研究生(外文):Shih-Yung Huang
論文名稱:以雷射剝離法研製氮化銦鎵垂直共振腔發光二極體
論文名稱(外文):Fabrication of Vertical Resonant Cavity InGaN LEDs by a Laser Lift-off Technique
指導教授:武東星姚品全姚品全引用關係
指導教授(外文):Dong-Sing WuuPin-Chuan Yao
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:98
中文關鍵詞:氮化鎵氮化銦鎵垂直共振腔發光二極體
外文關鍵詞:GaNInGaNResonant-Cavity Light-Emitting Diode (RCLED)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前垂直共振腔發光二極體主要應用於短距離資料傳輸的塑膠光纖上,原因在於垂直共振腔發光二極體有著較傳統發光二極體半高寬窄、指向性佳、以及發光效率高等之優點。垂直共振腔發光二極體結構組成主要由有機金屬化學氣相沉積系統成長氮化銦鎵/氮化鎵多重量子井層,並介於兩面反射率各為85%(5對)與99.9%(7.5對)之介電質(TiO2/SiO2)分佈式布拉格反射鏡之間,且在我們欲製作之波段525nm左右,有很寬之高反射率截止區(Stopband)。實驗結果顯示,在20 mA直流電流注入下,垂直共振腔發光二極體與傳統發光二極體之起始電壓值幾乎相符各為4.55V與4.45V。在525 nm的垂直共振腔發光二極體有較穩定之發光波長,由於電流密度增加時有較少的熱效應因而紅移量減少,且共振腔模態之半高寬為5.5 nm較傳統發光二極體之指向性更好,發光波長之半高寬由48降為35 nm,並得到約為100之品質因數。垂直共振腔發光二極體之電激發光譜有較強的光輸出,這是由於共振腔的影響之故,並且由不同角度之電激發光分析量測中證明發光方向有獲得改善。
We present the state-of-the-art resonant-cavity light-emitting diode (RCLED) application to short-haul communication system on plastic optical fiber. The RCLED structure composed of an InGaN/GaN multiple-quantum-well active layer has been grown by metal organic chemical vapor deposition, between the top (5-pairs) and bottom (7.5-pairs) dielectric TiO2/SiO2 distributed Bragg reflectors with optical reflectance of 85 and 99.9%, respectively with a larger stopband of 100 nm. It was found that the emission peak (around 525 nm) of RCLED shows more stability and lesser joule heating effect induced red shift were measured with increasing the injection current density. The mode cavity of the RCLED shows a linewidth of 5.5 nm at a main emission peak at 525 nm, while the emission directionality was rather improved than that of the conventional LED. The emission full width at half maximum can decrease from 48 to 35 nm and a quality factor for the structure of approximately Q~100.These results indicated that the EL spectrum of the RCLED was found to be modulated strongly due to the effect of the resonant cavity. Nevertheless, the improvement in emission directionality is attributed to the as evidenced by the angle-resolved electroluminescence measurements.
封面內頁
簽名頁
授權書.........................iii
中文摘要........................iv
英文摘要........................ v
誌謝..........................vi
目錄..........................vii
圖目錄......................... x

第一章 緒論 ......................1
1.1前言.....................1
1.2研究背景與動機..............3
第二章 基本原理 ....................8
2.1駐波.....................8
2.2共振腔之工作原理...............8
2.3品質因數(Quality Factor)與Finesse參數 .....11
2.4 分佈式布拉格反射鏡之工作原理........12
2.5介電質分佈式布拉格反射鏡之設計原理 .....14
2.5.1四分之一波膜堆反射鏡 ...........15
第三章 實驗步驟 .................... 28
3.1實驗流程.................. 28
3.1.1第一道製程-定義元件尺寸大小(Mesa)... 29
3.1.2第二道製程-透明導電層(Transparent Conductive Layer  TCL)............. 30
3.1.3第三道製程-絕緣層(Insulating Layer).... 31
3.1.4第四道製程-正負電極(P and N Electrode).. 31
3.1.5第五道製程-雷射剝離製程........ 32
3.1.6第六道製程-下介電質分佈式布拉格反射鏡之製作.................. 33
3.1.7第七道製程-晶圓貼合製程........33
3.1.8第八道製程-上介電質分佈式布拉格反射鏡之製作..................34
3.2 N & K光學量測系統 (N & K Analyzer)..... 35
3.3原子力顯微鏡量測儀(AFM).......... 35
3.4掃描式電子顯微鏡(SEM)........... 36
3.5電性量測系統............... .37
3.6光激發光光譜量測系統(PL) ..........38
3.7電激發光光譜量測系統(EL) ..........39
第四章 實驗結果與討論 ................. 51
4.1雷射剝離技術之研討............. 51
4.1.1雷射剝離後之氮化鎵表面......... 51
4.1.2雷射剝離後之氮化鎵表面粗糙度...... 52
4.1.3雷射剝離前後光激發光頻譜圖...... 52
4.2全介電質共振腔發光二極體之電特性量測.... 53
4.3全介電質共振腔發光二極體之調變上反射率之研討.....................53
4.3.1下介電質薄膜反射率之實際值與模擬值之比較 .................54
4.3.2上與下介電質布拉格反射鏡的實際反射率疊圖
.......................55
4.3.3介電質反射鏡之場發射掃描式電子顯微鏡剖面圖..................55
4.3.4介電質薄膜表面輪廓及粗糙度 ......55
4.4全介電質共振腔發光二極體之電激發光曲線圖之研討.....................56
4.5全介電質共振腔發光二極體之變溫量測分析 ...57
4.6全介電質共振腔發光二極體之電流密度對半高寬曲線圖之研討..................57
4.7全介電質共振腔發光二極體之電流密度對波長曲線圖之研討...................58
4.8全介電質共振腔發光二極體之光輻射角度對電激發光強度曲線圖之研討..............59
4.9全介電質共振腔發光二極體之電流密度對光輸出功率之研討................... 60
4.10全介電質共振腔發光二極體之可信賴度分析...60
第五章 結論 ......................81
參考文獻........................82
【1】H. Amano, T. Asahi, and I. Akasaki, “Stimulated Emission Near Ultraviolet at Room Temperature from a GaN Film Grown on Sapphire by MOVPE Using an AlN Buffer Layer,” Jpn. J. Appl. Phys., vol. 29, no.2, pp. L205-L206, Feb. 1990.
【2】S. Strite, and H. Morkoc, “GaN, AlN, and InN: A Review,” J. Vac. Sci. Technol. vol. B10, no. 4, pp. 1237-1266, Jul/Aug 1992.
【3】F. Calle1, F. B. Naranjo, S. Ferna’ndez, M. A. Sa’nchez-Garci’a, E. Calleja, and E. Mun˜oz, “Nitride RCLEDs Grown by MBE for POF Applications,” phys. stat. sol. (a) vol. 192, no. 2, pp. 277-285, March 2002.
【4】E. F. Schubert, Y.-H. Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, “Resonant Cavity Light-Emitting Diode,” Appl. Phys. Lett., vol. 60, no. 8, pp. 921-923, Feb. 1992.
【5】 P. Maaskant, M. Akhter, B. Roycroft, E. O’Carroll, and B. Corbett, “Fabrication of GaN-Based Resonant Cavity LEDs,” Phys. Stat. Sol. (a) vol. 192, no. 2, pp. 348-353, 2002.
【6】 B. Roycroft, M. Akhter, P. Maaskant, P. de Mierry, S. Ferna’ndez, F. B. Naranjo, E. Calleja, T. McCormack, and B. Corbett, “Experimental Characterisation of GaN-Based Resonant Cavity Light Emitting Diodes,” Phys. Stat. Sol. (a) vol. 192, no. 1, pp. 97-102, 2002.
【7】T. Honda, A. Katsube, T. Sakaguchi, F. Koyama, and K. Iga, “Threshold Estimation of GaN-Based Surface Emitting Lasers Operating in Ultraviolet Spectral Region,” Jpn. J. Appl. Phys., vol. 34, no.7A, pp. 3527-3532, July 1995.
【8】S. P. DenBaars, “Blue and Green InGaN VCSEL Technology,”
Department of Materials University of California, Santa Barbara, California, 93106, Final Report 1998-99 for MICRO Project 98-034.
【9】 Y.-K. Song, H. Zhou, M. Diagne, I. Ozden, A Vertikov, and A. V. Nurmikkoa, “A Vertical Cavity Light Emitting InGaN Quantum Well Heterostructure,” Appl. Phys. Lett. vol. 74, no. 23, pp. 3441-3443, Jun. 1999.
【10】Y.-K. Song, M. Diagne, H. Zhou, A. V. Nurmikkoa, R. P. Schneider, Jr., and T. Takeuchi, “Resonant-Cavity InGaN Quantum-Well Blue Light-Emitting Diodes,” Appl. Phys. Lett. vol. 77, no. 12, pp. 1744-1746, Sep. 2000.
【11】H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction—Part I: Basic Concepts and Analytical Trends,” IEEE J. Quantum Electron., vol. 34, no. 9, pp. 1612-1631, Sep. 1998.
【12】A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-Power Single-Mode Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Lett. vol. 85, no. 22, pp. 5161-5163, Nov. 2004.
【13】 I. L. Kresthikov, W. V. Lundin, A. V. Sakharov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, and Zh. I. Alferov, “Room-Temperature Photopumped InGaN/GaN/AlGaN Vertical-Cavity Surface-Emitting Laser,” Appl. Phys. Lett. vol. 75, no. 9, pp. 1192-1194, Aug. 1999.
【14】B. S. Ryvkin and K. Panajotov, ”Optical-Injection-Induced Polarization Switching in Polarization-Bistable Vertical-Cavity Surface-Emitting Lasers,” J. Appl. Phys. vol. 96, no. 11, pp. 6002-6007, Dec. 2004.
【15】F. B. Naranjo, S. Ferna´ndez, M. A. Sa´nchez-Garci´a, F. Calle, and E. Calleja, ”Resonant-Cavity InGaN Multiple -Quantum-Well Green Light-Emitting Diode Grown by Molecular-Beam Epitaxy,” Appl. Phys. Lett. vol. 80, no. 12, pp. 2198-2200, Mar. 2002.
【16】P. de Mierry, J. M. Bethoux, H. P. D. Schenk, M. Vaille, E. Feltin, B. Beaumont, M. Leroux, S. Dalmasso, and P. Gibart, ”Vertical Cavity InGaN LEDs Grown by MOVPE,” Phys. Stat. Sol. (a) vol. 192, no. 2, pp. 335-340, 2002.
【17】M. Arita, M. Nishioka, and Y. Arakawa, ”InGaN Vertical Microcavity LEDs with a Si-Doped AlGaN/GaN Distributed Bragg Reflector,” Phys. Stat. Sol. (a) vol. 194, no. 2, pp. 403-406, 2002.
【18】P.N. Stavrinou, et al., ”Insight into Planar Microcavity Emission as a Function of Numerical Aperture,” Opt. Commun. vol. 195, pp. 327-338, Aug 2001.
【19】A. M. Green., D. G. Gevaux, C. Roberts, C. C. Phillips, “Resonant-Cavity-Enhanced Photodetectors and LEDs in the Mid-Infrared,” Phys. E, vol.20, pp. 531-535, 2004.
【20】李正中編著,"薄膜光學與鍍膜技術",藝軒圖書出版社
【21】 S. Sano, T. Detchprohm, S. Mochizuki, S. Kamiyama, H. Amano and I. Akasaki, “Low-Dislocation-Density GaN and AlxGa1-xN (x≦0.13) Grown on Grooved Substrates,” J. Cryst. Growth, vol. 235, pp. 129-134, 2002.
【22】P. R. Tavernier and D. R. Clarke, “Mechanics of Laser-Assisted Debonding of Films,” J. Appl. Phys. vol. 89, no. 3, pp. 1527-1536, Feb. 2001.
【23】T. Ueda, M. Ishida, S. Tamura, Y. Fujimoto, M. Yuri, T. Saito, and D. Ueda, “Vertical InGaN-Based Blue Light Emitting Diode with Plated Metal Base Fabricated Using Laser Lift-Off Technique,” phys. stat. sol. (c) vol. 0, no. 7, pp. 2219-2222, 2003.
【24】C. F. Chu, F. I Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, “Study of GaN Light-Emitting Diodes Fabricated by Laser Lift-Off Technique,” J. Appl. Phys. vol. 95, no. 8, pp. 3916-3922, Apr. 2004.
【25】 P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong and T. Sands, “Reduction of the Energy Gap Pressure Coefficient of GaN Due To the Constraining Presence of the Sapphire Substrate,” J. Appl. Phys. vol. 85, no. 4, pp. 2385-2389, Feb. 1999.
【26】 W. S. Wong, Y. Cho, E. R. Weber, and T. Sands, “Structural and Optical Quality of GaN/Metal/Si Heterostructures Fabricated by Excimer Laser Lift-Off,” Appl. Phys. Lett. vol. 75, no. 13, pp. 1887-1889, Sep. 1999.
【27】W. S. Wong and T. Sands, “Fabrication of Thin-Film InGaN Light-Emitting Diode Membranes by Laser Lift-Off,” Appl. Phys. Lett. vol. 75, no. 10, pp. 1360-1362, Sep. 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top