跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃永銘
研究生(外文):Yung-Ming Huang
論文名稱:陣列式表面波頻譜法在檢測地下管之應用
論文名稱(外文):Detection of Underground Pipeline by Using Array Exploration Technique for Spectral Analysis of Surface Waves Method
指導教授:康裕明
學位類別:碩士
校院名稱:逢甲大學
系所名稱:土木及水利工程所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:196
中文關鍵詞:頻散曲線陣列式檢測地下管線表面波頻譜法
外文關鍵詞:Underground PipelinesDispersion CurveSpectral Analysis of Surface Waves Method (SASW)Array Testing
相關次數:
  • 被引用被引用:7
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
由於國內對公共安全之危機意識仍未高度警覺,往往在發生了巨大生命財產損失後才有防災的呼籲。發展非破壞地下管線探測技術已刻不容緩,但是國內地下管線之埋設並沒有一個專責的管理機構來統籌管制,任由各施工單位任意開挖,開挖常會挖斷或傷及地下管線,成為一顆顆不定時炸彈。因此施工單位在施工前除需要蒐集以往埋設資料外仍有必要進行地下管線探測,以了解地下管線分布情況及確切位置。
本論文以表面波頻譜法(Spectral Analysis of Surface Waves Method,簡稱SASW法)進行檢測台中港港區內工址,該地已知有一條寬4.8m×高3.8m中空方型之混凝土箱涵,其埋設之頂版深度為0.4m而底版深度為4.2m,該地並有一條直徑為60cm之圓型混凝土管涵,其圓心深度為4.5m。試驗時採暫態式衝擊震源,測線佈置以陣列式方式進行檢測,每測點使用兩垂直速度規,震源與第一速度規之距離為6m,而兩速度規之間距為3m,每測點間格為0.5m。藉由實驗數據繪製頻散曲線,由每測點波速變化情況再以二維頻散曲線圖方式展現地下視波速分佈情形。
現地研究成果顯示:1.做試驗時有重車經過或有風的干擾,會產生低頻背景雜訊而加入主訊中,造成頻散曲線低頻區有異常跳動現象發生。2.對於該現址而言,當背景雜訊影響過大而導致頻散曲線有異常時,將程式參數最低使用頻率設定由4Hz調高為15Hz,有助於抑制頻散曲線低頻區異常跳動的問題。3.在二維頻散曲線圖中,方型箱涵與圓型管涵之水平位置較容易判釋,但兩者的垂直位置並無法精確判釋。 4.利用單一頻散曲線圖,配合由各里程波速之起伏變化,可檢測出箱涵及管涵水平位置,再由波形之轉折處能粗估判釋出垂直位置。
The lack of awareness in public safety has caused a great loss in lives and assets. Then, prevention always came in sight late. Due to the insufficiency of government agencies to manage the underground pipelines, uncontrolled excavation often caused unnecessary destruction of existing pipelines. Therefore, there is an urging need to develop non-destructive technique to survey underground pipelines. Before any excavation, the contractor needs to identify the allocation of underground pipeline, not only from underground information from previous construction, but also to conduct any necessary in-situ underground survey.
This thesis applied the Spectral Analysis of Surface Waves method (SASW) to study the feasibility of identifying two embedded structures in Taichung Harbor Area. The first structure is a square concrete box culvert with a width of 4.8m and height of 3.8m. The depth from the ground level to the top and bottom of culvert are 0.4m and 4.2m respectively. The second structure is a circular concrete culvert with a diameter of 0.6m. Its depth is 4.5m from the ground level. The experiment was conducted by using an impulsive source to generate stress waves which were then measured by two vertical velocity transducers. The distance between the source and the first velocity transducer is 6m and the distance between two velocity transducers is 3m. Upon finishing the current testing point, the whole array was transferred to the next testing point with the interval of 0.5m. From the collected experiment data, each single dispersion curve at testing point was generated. The changes of wave velocity at testing points were then presented in a two dimensional diagram of dispersion curves.
The in-situ experimental results showed that: 1. Heavy vehicles or wind turbulence will generate low frequency noise which will be added to the main signal and cause irregular oscillation in the low frequency range of dispersion curve. 2. When there exists background noise that causes this irregular oscillation in the field test, the minimum frequency in the data-procession program can be tuned from 4Hz up to 15Hz so that the irregular oscillation will then be effectively suppressed. 3. From the two dimensional diagram of dispersion curves, the horizontal elevations of both embedded structures can be easily determined whereas the vertical elevations can not be determined. 4. Based on the changes of wave velocity at some specific single dispersion curves along the testing points, the horizontal elevations of both structures can be easily determined. And the vertical elevations of both structures can then be determined roughly from the transitional section of wave velocity.
中文摘要………………………………………………………………… Ⅰ
英文摘要………………………………………………………………… Ⅲ
目錄……………………………………………………………………… Ⅳ
圖目錄…………………………………………………………………… Ⅶ
表目錄………………………………………………………………… ⅩⅩ
照片目錄……………………………………………………………… ⅩⅩⅠ
第一章 緒論……………………………………………………………… 1
§1-1 研究動機與目的………………………………………………… 1
§1-2 試驗流程與研究方法…………………………………………… 3
§1-3 論文內容………………………………………………………… 4
第二章 文獻回顧………………………………………………………… 6
§2-1 前言……………………………………………………………… 6
§2-2 應力波原理……………………………………………………… 7
§2-3 表面波頻譜法數據處理……………………………………… 10
§2-3-1波長擷取範圍……………………………………………… 15
§2-4透地雷達法之簡介……………………………………………… 16
§2-5 表面波頻譜法之相關研究文獻………………………………… 17
§2-6 總結……………………………………………………………… 20
第三章 實驗設備與流程……………………………………………… 21
§3-1 實驗儀器設備………………………………………………… 21
§3-1-1 震源設備………………………………………………… 21
§3-1-2 數據擷取設備…………………………………………… 22
§3-1-3 接收器及其電源放大器………………………………… 22
§3-1-4電源設備………………………………………………… 23
§3-1-5其他設備………………………………………………… 24
§3-2 試驗流程……………………………………………………… 24
§3-3 數據轉換與程式應用流程…………………………………… 26
第四章 現地實驗過程………………………………………………… 29
§4-1 現場實驗地點的選定………………………………………… 29
§4-2 第一次測試過程……………………………………………… 30
§4-3 第二次測試過程……………………………………………… 31
§4-4第三次測試過程 ……………………………………………… 32
§4-5實驗過程改進及建議………………………………………… 33
第五章 實驗結果與討論 ……………………………………………… 35
§5-1第一次測試結果……………………………………………… 36
§5-2第二次測試結果……………………………………………… 38
§5-2-1 第一條測線……………………………………………… 38
§5-2-2第二條測線………………………………………………… 39
§5-2-3第三條測線………………………………………………… 39
§5-2-4第四條測線………………………………………………… 40
§5-2-5第五條測線 ……………………………………………… 42
§5-3 第三次測試結果………………………………………………… 44
§5-4 小結……………………………………………………………… 46
第六章 結論與建議……….…………………………………………… 48
§6-1 結論…………………………………………………………… 48
§6-2 建議…………………………………………………………… 49
參考文獻……………………………………………………………… 51
附錄A ……………………………………………………………… 153
【1】林進興,蘇百加,「表面波譜法(SASW)之實務與應用」,地工技術,第八十六期,第19-28頁,2001。
【2】康裕明,「使用最佳化技巧進行動態撓度試驗之回算分析」,中國土木水利工程學刊,第十卷,第二期,中國土木水利工程學會,第329-340頁,1998。
【3】倪勝火,常正之,「土層中雷利波散射曲線之數值計算模式分析」,中國土木水利工程學刊,第四卷,第一期,第49-57頁,1992。
【4】林盈政,「表面波譜法應用於偵測地下管線技術之初步研究」,國立成功大學土木工程研究所碩士論文,臺南,1996。
【5】張榮峰,「表面波譜法應用於偵測地下管線之參數研究」,國立成功大學土木工程研究所碩士論文,臺南,1997。
【6】黃清林,「表面波頻散曲線異常跳動現象之探討」,逢甲大學土木工程研究所碩士論文,臺中,2004。
【7】Nazarian S., and Stokoe K. H., Ⅱ, “Use of Surface Waves in
Pavement Evaluation,” Transprtation Research Record 1070,1986.
【8】Sayyedsadr, M., and Drnevich, V. P., “SASWOPR:A Program to
Operate on Spectral Analysis of Surface Wave Data,” Nondestructive Testing of Pavements and back-calculation of Moduli, Edited by Bush, A. J., III, and Baladi, G. Y., American Society for Testing and Materials, Special Publication 1026, pp. 670-682,1989.
【9】Al-Hunaidi, M. O., “Insight on the SASW Nondestructive Testing
Method,” Canadian Journal of Civil Engineering, Vol. 20, No. 6, pp. 940-950,1993.
【10】Hiltunen, D. R. and Woods, R. D., “Variables Affecting the Testing of Pavement by the Surface Waves Method,” Transportation Research Record 1260, TRB, National Research Council, Washington, D. C., pp. 42-52,1990.
【11】Sanchez-Salinero, I., Roesset, J. M., Shao, K. Y., Stokoe, K. H., II, and Rix, G. J., “Analytical Evaluation of Variables Affecting Surface Wave Testing of Pavements,” Transportation Research Record 1136, TRB, National Research Council, Washington, D. C.,1987.
【12】Szendrei, M. E., and Freeme, C. R., “Roads Response to Vibration Tests,” Journal of the Soil Mechanics and Foundations Engineering Division, ASCE, Vol. 96, No. SM6, pp. 2099-2124,1970.
【13】Heisey, S., Stokoe, K. H., II, and Meyer, A. H., “Moduli of Pavement Systems From Spectral Analysis of Surface Waves,” Transportation Research Record 852, pp. 22-31,1982.


【14】Richart, F. E., Hall, J. R., and Woods, R. D., Vibrations of Soils and Foundations, Prentice-Hall, Inc., Englewood Cliffs, N. J.,1970.
【15】Steward,R.,and Unterberger,R.R.,“Seeing through Rock Salt with Radar,“Geophysics,41,123-132,1976.
【16】Fisher,E.,McMechan,G.A.,and Annan,A.P., ″“Acquisition and
Processing of Wide-Aperture Ground-Penetrating Radar Data”,Geophysics, 57, 495-504, 1992.
【17】Baker,G.S.,Schmeissner,C.,Steeples,D.W.,“Seismic Reflections from Depths of less than Two Meters, ” Geophysical Research Letters, Vol.26,No.2,279-282,1999.
【18】Rayleigh, L.,”On Waves Propagated Along the Plane Surface of an Elastic Solid ,”London Mathematical Society Proc.,17,pp.4-11,1885.
【19】Jones R., B. Sc., Ph.D., “In-Situ Measurement of the Dynamic Properties of Soil by Vibration Methods,” Journal of Geotechnical Engineering, ASCE, pp. 1-21,1958.
【20】Menzies B. K.,and Matthews M. C.,“ The Continuous Surface-wave System: A Modern Technique for Site Investigation,” Special Lecture: Indian Geotechnical Conference Madras, Dec. 11-14, 1996.
【21】倪勝火、常正之,「土層中雷利波散射曲線之數值計算模式分析」,中國土木水利工程學刊,第四卷,第一期,第49-57頁,1992。

【22】康裕明,「表面波分散曲線的影響因素」,中華民國第十六屆全國力學會議論文集,基隆,第837-843頁,1992。
【23】張德文,「表面波頻譜法檢測層狀地工系統之理論研究」,第六屆路面工程學術研討會,第381-402頁,1992.
【24】Heisey J. S., Stokoe K. H., Ⅱ, W. R. Hudson, and A. H. Meyer, “Determination of In Situ Shear Wave Velocities from Spectral Analysis of Surface Waves,” Transportation Research Report 256-2, U. of Texas at Austin,1982.

【25】Hiltunen D. R. and Woods R. D., ”Influence of Source and Receiver Geometry on the Testing of Pavements by the Surface Waves Method,” In Nondestructive Testing of Pavements and Backcaculation of Moduli, STP 1026,ASTM, Philadelphia, U.S.A, pp.138-154,1989。
【26】陳協良,「地下孔洞震波檢測法之訊號特性與改良」,逢甲大學土木及水利工程研究所碩士論文,臺中,1998。
【27】Satoh,T.,K.Yamagata,C.J.poran and J.A.Rodrlguez,”Soil Profiling by Spectral Analysis of Surface,”Proc.of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,St.Louis,Missouri,pp.1429-1434,1991.
【28】秦復興,「表面波的頻射曲線於層狀系統的數值研究」,逢甲大學土木及水利工程研究所碩士論文,2001。
【29】M . C .Matthews , V . S . Hope and C . R .I .Clayton., “The use of Surface Waves in the Determination of Ground Stiffness Profiles,” Proc. Instn Civ. Engrs. Geotech. Engng 1996 .119 .Apr. .84-85. Prentice-Hall Inc., Englewood Cliffs, N. J,1970.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top