跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范彩雲
研究生(外文):Tsai-Yun Fan
論文名稱:鄰近開挖基地相互影響之有限元素分析
論文名稱(外文):Analysis of Interaction of Adjacent Excavations by Using the Finite Element Method
指導教授:陳廣祥陳廣祥引用關係
學位類別:碩士
校院名稱:逢甲大學
系所名稱:土木及水利工程所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:266
中文關鍵詞:深開挖有限元素分析范彩雲
外文關鍵詞:finite element analysisdeep excavation
相關次數:
  • 被引用被引用:7
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:2
摘要
在有限的空間內,工程常在有鄰近建築物的環境下進行,或有鄰近基地同時開挖的情況發生,故如何在開挖過程中減少鄰房之損害與有效控制及減少壁體的側向變形,以增加開挖的穩定性,是營造工程業關切的問題之一。
鄰近基地同時開挖之情形約可分為兩種,一種是兩開挖基地之擋土壁緊接著,另一種可能性是開挖基地在有限的隔離下同時進行的開挖。擋土壁緊接著的開挖基地有境界面擋土牆工法選擇及開挖時機配合的問題;隔著有限距離的鄰近基地開挖時雖無擋土牆施工的困擾,但擋土支撐問題仍然存在(挖方後兩開挖基地間巷道變成隔在兩邊擋土牆之間的夾層土),故雙方應協議是否同步施工,或在設計前協調工法的選擇,一邊選用內支撐工法,另一邊選用逆築工法,或者兩邊都選擇逆築工法,以增加開挖的穩定性。
本研究的目的嘗試利用有限元素方程式(SAGE GRISP)模擬分析以下三種開挖狀況,第一種為模擬隔著巷道的鄰近基地以不同開挖工法施工對開挖基地的影響,一邊選用內支撐工法,另一邊選用逆築工法,或者兩邊都選擇逆築工法時之壁體側向變位;第二種為模擬不同巷道距離對開挖基地壁體之影響;第三種是兩開挖基地施工間隔時間對壁體的影響,以作為工程開挖設計之初的參考。
不同巷道距離對開挖基地的影響分析結果:巷道距離愈大受鄰開挖基地的影響愈小,即開挖基地間隔距離愈大其擋土壁體之側量位移量、彎矩值及及剪力愈小,且兩開挖基地應以10m以上之距離為宜。
兩鄰近基地不同施工間隔時間之分析結果:兩基地開挖時間愈接近時,壁體變位有較少之趨勢;兩基地開挖間隔時間愈長,則先開挖基地壁體產生彎矩愈大,而對後開挖基地之壁體彎矩影響較不顯著;兩基地開挖間隔時間愈長,則先開挖基地壁體產生剪力愈大,而對後開挖基地壁體剪力影響較不顯著;由以上分析可得,兩基地開挖以能同時開挖最為理想,或是時間間隔愈短愈好。
兩鄰近基地採不同施工方式分析結果:先開挖基地採逆築工法施工時不論後開挖基地採何種開挖方式,對壁體造成之側向位移量、彎矩值及剪力值皆較先開挖基地採順打工法施工時較少,故先開挖基地採逆築工法施工時較採順打工法來得佳,而後開挖基地採何種開挖方式皆可。
Abstract
In the limited space, the excavations often take place near buildings, or the adjacent bases simultaneously excavate. Therefore, how to reduce harm of neighbor buildings during excavations, and how to effectively control or reduce the lateral deformation of retaining wall to increase the stability during excavations. They are the questions what engineering are interested in.

This research attempted to simulate three kinds of excavations by using the finite element software package (SAGE GRISP).
The first one is analyzing the different results of using different excavation methods in adjacent bases. This research adopts four methods.
I. Top Down Method at the first excavated base, and Bottom Up Method at the second excavated base.
II. Top Down Method at the first excavated base, and Top Down Method at the second excavated base.
III. Bottom Up Method at the first excavated base base, and Top Down Method at the second excavated base.
IV. Bottom Up Method at the first excavated base base, and Bottom Up Method at the second excavated base.
The second one is analyzing the different results of using different distances in two adjacent bases.
The last one is analyzing the different results of using different time interval between two excavations.

No matter what method was used at the second excavated base, the lateral deformations, bending moment and shear force of the retaining wall would be smaller when Bottom Up Method was used at the first excavated base. Therefore, it is better to choose Bottom Up Method than Top Down Method at the first excavated base, and it does not matter to choose any method at the later excavated base.

The two adjacent bases have longer distance, and then would have less interaction to each other. That means the two adjacent bases have longer distances, the lateral deformations, bending moment and shear force of the retaining wall would be much smaller.

In case the time interval of two adjacent excavations is shorter, the lateral deformations of the retaining wall would be smaller. But, if the time interval of adjacent excavations is shorter, the bending moment and shear force of the retaining wall of the first excavated base are smaller. Besides, the time interval of adjacent excavations will not cause obvious influences to the bending moment and shear force of the retaining wall in the later excavated base.

Briefly, it is perfect that two bases are excavated at the same time, or the time interval of adjacent excavations is as shorter as better.

This research is trying to find some good references for the excavation projects.
目錄
摘要……………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅴ
表目錄…………………………………………………………………Ⅹ
圖目錄…………………………………………………………………ⅩⅣ
第一章 緒論…………………………………………………………1
1.1研究動機…………………………………………………………1
1.2研究目的…………………………………………………………1
1.3研究程序…………………………………………………………2
第二章 相關文獻回顧…………………………………………………4
2.1假設支點法………………………………………………………4
2.2視土壓力法………………………………………………………5
2.3彈性基礎梁法……………………………………………………5
2.4有限元素法………………………………………………………9
2.4.1基本理論……………………………………………………9
2.4.2土壤的應力-應變關係及土壤模式………………………12
2.4.2.1彈性增量模式-雙曲線模式…………………………13
2.4.2.2線彈性-彈塑性模式…………………………………17
2.4.2.3 Cam-clay模式…………………………………………21
第三章 研究內容與研究方法之建立……………………………40
3.1有限元素分析研究方法之建立…………………………………41
3.1.1土壤應力-應變組成律……………………………………41
3.1.2土壤參數……………………………………………………42
3.1.2.1原始等向壓密線的斜率λ……………………………42
3.1.2.2解壓-再壓曲線之斜率κ ……………………………42
3.1.2.3臨界孔隙比ecs…………………………………………43
3.1.2.4平均有效應力P,-軸差應力q空間中臨界狀態線之斜率M…………………………………………………………44
3.1.2.5土壤之剪力模數G……………………………………44
3.1.2.6水的單位重rw…………………………………………47
3.1.2.7土壤單位重rbulk………………………………………47
3.1.2.8水的體積模數kw………………………………………48
3.1.3結構參數……………………………………………………48
3.1.3.1模擬壁體參數…………………………………………48
3.1.3.2模擬樓板參數…………………………………………49
3.1.3.3模擬支撐參數…………………………………………50
3.1.4初始應力……………………………………………………51
3.1.5分析範圍及邊界條件………………………………………53
3.1.5.1邊界條件………………………………………………53
3.1.5.2邊界範圍………………………………………………53
3.1.6分析使用之元素……………………………………………56
3.1.7網格密度……………………………………………………57
3.1.7.1深度(Y)方向網格密度之探討………………………58
3.1.7.2水平(X)方向網格密度之探討………………………58
3.1.8介面元素(interface element)……………………………60
3.1.9坐標系統……………………………………………………61
3.2 SAGE CRISP 有限元素分析程式應用於既有工程案例之分析…………………………………………………………………62
3.2.1世貿大樓案例分析…………………………………………62
3.2.1.1世貿大樓工程概況……………………………………62
3.2.1.2工址土層狀況…………………………………………62
3.2.1.3有限元素分析時使用之參數…………………………64
3.2.2開挖模擬……………………………………………………65
3.2.2.1開挖模擬工程概況……………………………………66
3.2.2.2有限元素分析時使用之參數…………………………66
3.3 SAGE CRISP 有限元素分析程式應用於相鄰兩開挖基地間相互影響之分析…………………………………………………67
3.3.1鄰近開挖假設工程…………………………………………68
3.3.2兩開挖基地巷道距離之影響………………………………69
3.3.2.1施工歩驟………………………………………………69
3.3.3施工時間間隔對兩開挖基地的影響………………………70
3.3.3.1施工歩驟………………………………………………71
3.3.4不同施工方式之應用對兩開挖基地的影響………………73
3.3.4.1施工歩驟………………………………………………73
第四章 研究結果之比較與討論……………………………………145
4.1 SAGE CRISP 有限元素分析程式應用於既有工程案例之分析結果與討論……………………………………………………145
4.1.1世貿大樓案例分析之結果與討論………………………145
4.1.2開挖模擬案例分析之結果與討論………………………147
4.2 SAGE CRISP 有限元素分析程式應用於相鄰兩開挖基地間相互影響之分析結果與討論……………………………………148
4.2.1巷道距離對兩開挖基地的影響之分析結果與討論……148
4.2.2施工時間間隔對兩開挖基地的影響之分析結果與討論150
4.2.3不同施工方式應用對兩開挖基地的影響之分析結果與討論………………………………………………………151
第五章 結論與建議…………………………………………………258
5.1結論……………………………………………………………258
5.2建議……………………………………………………………259
參考文獻………………………………………………………………260
參考文獻
1.日本建設機械化協會編,「地下連續壁設計、施工」,技報堂,東京,pp.31-67(1975)。
2.日本建築協會,建築基礎構造設計規準(1974)。
3.王偉任,�撥L型樁應用於深開挖鄰房保護之研究-溝槽開挖階段�� ,碩士論文,國立成功大學土木工程研究所(2001)。
4.丘達昌�慾T向度有限元素開挖分析�峞A碩士論文,國立台灣工業技術學院營建工程研究所(1992)。
5.吳宗憲,�憔W狀地盤改良應用於深開挖之分析研究�峞A碩士論文,國立台灣科技大學營建工程技術研究所(1994)。
6.吳福州,「彈塑性有限元素法於台北地區深開挖工程之分析」,碩士論文,國立台灣工業技術學院營建工程技術研究所(1994)。
7.李磑柏,「以單樑模式分析深開挖引致之擋土壁體變形」,碩士論文,國立台灣工業技術學院營建工程技術研究所(2000)。
8.杜明昇,�敷糽梩怹野峏馧n弱粘土深開挖之模型試驗�� ,碩士論文,國立台灣科技大學營建工程技術研究所(2002)。
9.林海珠,「利用可調式側向土壓力進行深開挖之研究」,碩士論文,國立台灣工業技術學院營建工程技術研究所(1995)。
10.林耀煌,高層建築基礎開挖施工法與設計實例,增訂版,長松出版社(1992)。
11.胡逸舟、秦中天、劉泉枝,�憧x北盆地大地工程相關特性之探討�峞A地工技術雜誌,第54期,第5-14頁(1996)。
12. 唐雨耕,�慾g壤參數識別應用於深開挖分析之研究�峞A博士論文,國立台灣科技大學營建工程技術研究所,(1998)。
13.唐雨耕、歐章煜,「VEX使用者手冊」,(2000)。
14.唐雨耕和歐章煜,「Cam-clay彈塑性模式應用於深開挖分析之參數研究」,中華民國力學期刊系列B,第十五卷,第一期,第1頁至12頁(1999)。
15.秦中天、鄭在仁、劉泉枝,�憧x北沈泥之不排水剪力強度與過壓密比之關係�峞A中國土木水利工程學刊,第一卷,第三期,第245-250頁。
16.許景翔,�撞`開挖之回饋分析�峞A碩士論文,國立高雄第一科技大學營建工程研究所(2004)。
17.森重龍馬,「地下連續壁之設計計算」,土木技術,30卷8號,第79-90頁,日本(1975)。
18.董家均,「單樑模式之深開挖分析研究」,碩士論文,國立台灣工業技術學院營建工程技術研究所(1997)。
19.鄒瑞卿,�憧x北都會區超高層建築深開挖角隅效應及潛變行為之數值分析�� ,碩士論文,國立成功大學土木工程研究所(2002)。
20.歐章煜,「深開挖工程─分析設計理論與實務」,科技圖書公司 (2002)。
21.歐章煜、蕭文達,�憧x北粉質黏土之不排水勁度�峞A中國土木水利工程學刊,第六卷,第二期,第233-237頁(1991)。
22.蔡文中,�撮u性基礎梁法深開挖分析�峞A碩士論文,國立台灣科技大學營建工程技術研究所(2002)。
23.鄭光宏,�慾瑣戴鼣s續壁側向變位之影響�峞A碩士論文,國立雲林科技大學營建工程研究所(2001)。
24.謝百鉤和歐章煜,「利用擬塑性模式於粘土不排水條件之深開挖分析」,中國土木水利工程學刊,第十二卷,第四期,第703頁至713頁(2000)。
25.簡文青,�憫葞嬪齔蔡`開挖擋土壁壁體變形行為之研究�� ,碩士論文,國立中央大學土木工程學系(2002)。
26.AI-Tabba, A. and Muir Wood, D., “Horizontal drainage during consolidation: Insights gained from analysis of a simple problem” Geotechnique, Volume 41, No 4, PP 571-585, 1991.
27.Bolton, M.D., Sun, H.W. and Britto, A.M. “Finite element analysis of bridge abutments on firm clay” Computers and Geotechnics, 15, pp 221-245, 1993.
28.Bolton, M.D., Britto, A.M., Powrie, W. and White, T.P, “Finite analysis of a centrifuge model of a retaining wall embedded in a heavily over consolidated clay” Computers and Geotechnics, Vol.7, No. 4, pp.289-318, 1989.
29.Borja�z R.I.�z “Analysis of incremental excavation based on critical state theory” Journal of Geotechnical Engineering, ASCE�z Vol. 116�z No. 6�z pp.964-985, 1990.
30.Clough�z G.W. and Mana, A.I.�z “Lessons learned in finite element analysis of temporary excavation” Numerical Method in Geotechnics, ASCE�z C.S. Desai, ed., Vol.1�z pp.243-265, 1976.
31.Hird C.C., Pyrah I.C. and Russell D., Potts D.M. and Ganendra D., “Finite element analysis of the collapse of reinforced embankments on soft ground” Geotechnique, Vol. 41, No. 4, PP 627-630, 1991.
32.Gunn, M.J. A Satkunananthan, A. and Clayton, C.R.I.., “Finite element modeling of installation effects” Ice Conference on Retaining Structures, Robinson College, Cambridge, pp.46-55, 1992.
33.Haliburton T., “Soil structure interaction” T.P. 14, Okla, State UNIV. Stillwater OK, pp.181, 1979.
34.Jaky, J., “Pressure in soil” 2d, ICSSMFE, Vol. 1, pp.103-107, 1948.
35.James, E.L. and Jack, B.L., “A design study of diaphragm wall”Diaphragm Wall and Anchorages, pp.41-49, 1975.
36.Kusakabe, O., Maeda, V., Ohuchi, M. and Hagiwara, T., “Attempts at centrifugal and numerical simulation of a large scale in situ loading on a granular material” Predictive Soil Mechanics Proceedings of the Wroth Memorial Symposium, St. Catherine''s College, Oxford, pp. 404-420, 1992.
37.LEE, C.K.T. and Butler, F.C., “Estimation of earth pressure in the design of a deepened quay wall formed of an existing relieving platform” ICE Conference on Retaining Structures, Robinson College, Cambridge, pp702-710, 1992.
38.Miyoshi, M.,“Mechanical behavior of temporary braced wall”Proceedings, 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, No.2/60, pp. 665-658, 1977.
39.Muir Wood, D., Mackenzie, N.L. and Chan, A.H.C., “Selection of parameters for numerical predictions” Predictive Soil Mechanics, Proceedings of the Wroth Memorial Symposium St Catherine''s College, Oxford, pp496-512, 1992.
40.Nakamura, H. and Nakagawa, A., “Stress calculation of earth-retaining structures during construction” Soils and Foundations, Vol.12, No.4, pp.95-103, 1972.
41.Ou�z Chang-Yu and Lai�z Ching-Her.�z “Finite element analysis of deep excavation in layered sandy and clayey soil deposits” Canadian Geotechnical Journal, Vol. 31�z pp.204-214, 1994.
42.Pearlman S.L. and Wolosick J. R.,“Anchored earth retaining structures design procedures and case studies”Design and Performance of earth retaining structures, New York, ASCE, pp.525-539, 1990.
43.Peck, R. B.,“Deep excavation and tunneling in soft ground” Proceedings, Seventh International Conference on Soil Mechanics and Foundation Engineering, Mexico City, State-of-the-art Vol.pp.225-290.
44. Powrie, W., and Li, E.S.F., “Finite element analysis of an in situ wall propped at formation level” Geotechnique, Vol.41, No.4, pp.499-514.
45.Powrie, W., Davies, J.N. and Britto, A.M., “A cantilever retaining wall supported by a bream during temporary works activities” Ice Conference on Retaining Structures, Robinson College, Cambridge, pp.418-428,1992.
46.Rampello, S., Tamagnini, C. and Calabresi, C., “Observed and predicted response of a braced excavation in soft to medium clay” Predictive Soil Mechanics, Proceedings of the Wroth Memorial Symposium St Catherine''s College, Oxford, pp 544-561, 1992.
47.Richards, D.J. and Powrie, W., “Finite element analysis of construction sequence for propped retaining walls” Proc. Inst. of Civil Engineers, Geotechnical Eng., 107, pp.207-216, 1994.
48.Stallebrass S. E., and Taylor R. N., “The development and evaluation of a constitutive model for the prediction of ground movements in overconsolidated clay” Geotechnique, Vol.41, No.2, pp.235-253, 1991.
49.Sage Crisp Geotechnical Finite Element Analysis Software User Manual, Version 4.
50.Rick Woods and Amir Rahim .,“Sage Crisp Technical Reference Manual” Version 4,2001.
51.Powrie. W. and Batten. M. “Comparison of measured and calculated temporary-prop loads at Canada water station” Geotechnique, Vol.50, No.2, pp.127-140.
52.Watson, G.V.R. and Carder, D.R., “Comparison of the measured and computed performance of a propped bored pile retaining wall at Walthamstow” Proc. Inst. of Civil Engineers, Geotechnical Eng., 107, pp. 127-133,1994.
53.William C. Keer and George, J. Tamoro, “Diaphragm walls -update on design and performance”Design and Performance of Earth Retaining Structures, ASCE, pp.576-596, New York, 1990.
54.Winkler, E., “Die lehre von elastictaet und festigkeit”Pray (H. Dominicus), pp.182-184, 1867.
55.Wroth,C.P., “The interpretation of in situ soil test“ Geotechnique, No.4, pp.449-489, 1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top