(3.230.76.48) 您好!臺灣時間:2021/04/11 09:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王嘉河
研究生(外文):Chia-Ho Wang
論文名稱:銅鈰觸媒在過量氫氣中CO的選擇性氧化研究
論文名稱(外文):The Study of CO Selectivity Oxidation in Excess of Hydrogen over the Copper-Ceria Catalyst
指導教授:張振昌
指導教授(外文):Alex C.-C. Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:100
中文關鍵詞:Cu/Ce-MCM-41Ce-MCM-41ㄧ氧化碳選擇性氧化銅-鈰觸媒CuO-CeO2
外文關鍵詞:Copper-Ceria CatalystCu/Ce-MCM-41Ce-MCM-41CuO-CeO2CO Selectivity Oxidation
相關次數:
  • 被引用被引用:6
  • 點閱點閱:219
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究在於使用共沉澱法製備CuO-CeO2的觸媒、微濕含浸法製備Cu/Ce/γ-Al2O3觸媒,以及使用微濕含浸將銅搭載於Ce-MCM-41載體上合成Cu/Ce-MCM-41觸媒。使其應用在過量氫氣環境中,進行選擇性一氧化碳氧化的反應,探討其觸媒對於CO的移除或轉化為CO2的活性為何,而對於合成的觸媒進行觸媒特性分析以及活性測試。特性分析方面使用XRD測量觸媒結構,BET量測觸媒表面積,ICP檢測觸媒的含量,而活性測試方面則於反應溫度50〜350oC下模擬重組器出口的氣體:1vol%的CO和2vol%的O2以及50vol%的H2,額外加入15%的CO2和3%的H2O,探討其CO的轉化率和選擇率。
實驗結果顯示銅、鈰莫爾比3:7的CuO-CeO2觸媒在反應溫度170〜230oC,CO的轉化率可達100%。而在相同的銅、鈰莫爾比情況下,Cu/Ce/γ-Al2O3觸媒的CO轉化率優於CuO-CeO2觸媒,其中銅、鈰莫爾比6:4的Cu/Ce/γ-Al2O3觸媒於230 oC下CO轉化率可達99.50%。然而,Cu/Ce-MCM-41觸媒CO轉化率卻遠不如CuO-CeO2及Cu/Ce/γ-Al2O3,由BET及ICP結果斷定,Cu/Ce-MCM-41表面積大幅度的下降,造成觸媒活性點減少,以及觸媒中Ce的含量不足所致。
This study is focused to optimize the selective oxidation of carbon monoxide reaction process over three types of the lab-prepared catalysts to remove CO or convert into CO2 in the presence of excess hydrogen.The proposed catalysts, Cu/Ce/γ-Al2O3 and Cu/Ce-MCM-41 were prepared by incipient wetness method, and CuO-CeO2 was made by co-precipitation. These catalysts were characterized by XRD, BET, and ICP. The activity of catalysts was tested in an environment of 1vol% CO, 2vol%O2 50vol% H2, 15vol% CO2, and 3vol%H2O.
The experimental results showed that the CO conversion achieved 100% at 170 oC ~230oC when the CuO-CeO2 catalyst with Cu to Ce molar ratio is 3:7. At the same molar ratio, the CO conversion of Cu/Ce/γ-Al2O3 was higher than those by CuO-CeO2 catalysts.The CO conversion achieved 99.5% at 230°C when the Cu/Ce/γ-Al2O3 catalyst with Cu to Ce molar ratio was 6:4. According to the BET and ICP results showed that surface area of Cu/Ce-MCM-41 decrease significantly.The active centers decreased and the ceria content was insuffucuent as well.
目 錄
摘要 I
Abstract II
圖目錄 I
表目錄 IV
第一章 導論 1
1-1 前言 1
1-2 孔洞觸媒載體的介紹 1
1-2-1 MCM-41 2
1-2-2 Al2O3 4
1-3文獻回顧 5
1-3-1 導氧離子氧化物 5
1-3-2 界面活性中心 7
1-3-3 CuO-CeO2觸媒簡介 8
1-3-4 ㄧ氧化碳的選擇性氧化 11
1-4 本文研究目的 13
第二章 實驗方法與步驟 15
2-1 觸媒的合成 15
2-1-1 CuO-CeO2觸媒的合成 15
2-1-2 Cu/Ce/γ-Al2O3觸媒的合成 16
2-1-3 MCM-41系列觸媒的合成 18
2-1-3-1載體MCM-41的合成 18
2-1-3-2 Ce-MCM-41的合成 19
2-1-3-3 Cu/Ce-MCM-41觸媒的合成 20
2-1-4 CeO2觸媒的合成 21
2-2觸媒的特性分析 21
2-2-1 BET表面積測試 21
2-2-2 X-ray粉末繞射儀晶體結構的檢測 22
2-2-3感應耦合電漿光譜儀的檢測 23
2-3 觸媒活性測試實驗 24
2-3-1 觸媒在固定床反應器的程序升溫反應 24
第三章 結果與討論 27
3-1觸媒BET的結果分析 27
3-1-1 CuO-CeO2和Cu/Ce/γ-Al2O3觸媒的表面積 27
3-1-2 Cu/Ce-MCM-41觸媒的表面積 29
3-2 X-ray粉末繞射圖譜的結果分析 31
3-2-1 CuO-CeO2觸媒與Cu/Ce/γ-Al2O3觸媒的比較 31
3-2-2 MCM-41系列觸媒XRD的分析結果 33
3-2-3 XRD圖譜下觸媒的晶粒大小 35
3-3感應耦合電漿光譜儀的結果分析 36
3-4 動力學研究的結果討論 37
3-4-1 固定床反應器程序升溫反應的結果分析 37
3-4-1-1觸媒中Cu-Ce的成分比例對於選擇性CO氧化活性的影響 38
3-4-1-2 IWP與COP合成的觸媒對於選擇性CO氧化活性的探討 41
3-4-1-3 CO2對於選擇性CO氧化活性的影響 42
3-4-1-4 H2O對於選擇性CO氧化活性的影響 48
3-4-1-5同時加入CO2和H2O對於選擇性CO氧化活性的影響 55
3-4-1-6反應後出口的CO濃度探討 57
第四章 結論與展望 60
附錄 63
附錄A 實驗儀器及裝置 63
附錄B 藥品 64
附錄C XRD晶格 65
附錄D XRD Databank 66
附錄E 氣相層析儀實驗相關資料 69
E-1 檢量線 69
E-2 實驗參數 70
附錄F BET吸/脫附等溫曲線的形式 71
附錄G 微濕含浸法前驅溶液的製備 74
附錄H MCM-41系列觸媒合成方式文獻之整理 75
附錄I CeO2系列觸媒合成方式文獻之整理 81
參考文獻 84

圖目錄
圖1-1 四級氨鹽的化學結構式 3
圖1-2 MCM-41的生成機制 4
圖1-3 螢石型氧化物之結構 7
圖1-4 CuO-CeO2觸媒CO氧化表面反應路徑圖 10
圖2-1 共沉澱法實驗流程圖 16
圖2-2 微濕含浸法實驗流程圖 18
圖2-3 感應耦合電漿光譜儀 23
圖2-4 程序升溫反應實驗流程圖 26
圖3-1 CuO-CeO2 觸媒BET恆溫吸/脫附曲線圖 28
圖3-2 Cu/Ce/γ-Al2O3觸媒和γ-Al2O3載體BET恆溫吸/脫附曲線圖 29
圖3-3 MCM-41系列的觸媒BET恆溫吸/脫附曲線圖 30
圖3-4 CuO/CeO2觸媒的XRD晶相結構圖譜(A)銅、鈰莫爾比2:8(9wt%的銅)(B)銅、鈰莫爾比3:7(12wt%的銅)(C)銅、鈰莫爾比 6:4(30wt%的銅)(D)銅、鈰莫爾比8:2(50wt%的銅) 32
圖3-5 銅、鈰莫爾比6:4 Cu-CeO2與Cu/Ce/γ-Al2O3 XRD圖譜 33
圖3-6 MCM-41和Ce/MCM-41小角度XRD圖譜 34
圖3-7 廣角度XRD Cu/Ce/MCM-41觸媒的訊號圖譜 35
圖3-8 於不同銅、鈰比例下的CuO-CeO2觸媒,CO轉化率與反應溫度的關係圖(表格2-3中B種的進料方式) 39
圖 3-9 氧氣的反應路徑圖 40
圖3-10 於不同銅、鈰比例下的CuO-CeO2觸媒,CO選擇率與反應溫度的關係圖(表格2-3中B種的進料方式) 41
圖3-11 CuO-CeO2、Cu/Ce/γ-Al2O3觸媒,CO轉化率與反應溫度比較圖(表格2-3中B種的進料方式) 42
圖3-12 銅、鈰莫爾比2:8的CuO-CeO2觸媒,加CO2和未加CO2情況 下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中D種的進料方式) 44
圖3-13 銅、鈰莫爾比3:7的CuO-CeO2觸媒,加CO2和未加CO2情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中D種的進料方式) 44
圖3-14 銅、鈰莫爾比6:4的CuO-CeO2觸媒,加CO2和未加CO2情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中D種的進料方式) 45
圖3-15 銅、鈰莫爾比8:2的CuO-CeO2觸媒,加CO2和未加CO2情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中D種的進料方式) 45
圖3-16 當CO轉化率小於零時,不同銅、鈰比例的CuO-CeO2觸媒對於反應溫度的分布圖 46
圖3-17 銅、鈰莫爾比6:4的Cu/Ce/γ-Al2O3觸媒,加CO2和未加CO2情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中D種的進料方式) 46
圖3-18 銅、鈰莫爾比8:2的Cu/Ce/γ-Al2O3觸媒,加CO2和未加CO2情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中D種的進料方式) 47
圖3-19 CuO-CeO2、Cu/Ce/γ-Al2O3觸媒加入CO2情況下,CO轉化率與反應溫度比較圖(表格2-3中D種的進料方式) 47
圖3-20 反應模擬氣加入15vol%的CO2時,不同比例的觸媒,CO選擇率相對於反應溫度的比較圖(表格2-3中D種的進料方式 48
圖3-21 銅、鈰莫爾比2:8的CuO-CeO2觸媒,加H2O和未加H2O情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中C種的進料方式) 50
圖3-22 銅、鈰莫爾比3:7的CuO-CeO2觸媒,加H2O和未加H2O情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中C種的進料方式) 50
圖3-23 銅、鈰莫爾比6:4的CuO-CeO2觸媒,加H2O和未加H2O情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中C種的進料方式) 51
圖3-24 銅、鈰莫爾比8:2的CuO-CeO2觸媒,加H2O和未加H2O情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中C種的進料方式) 51
圖3-25 銅、鈰莫爾比6:4的Cu/Ce/γ-Al2O3觸媒,加H2O和未加H2O情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中C種的進料方式) 52
圖3-26 銅、鈰莫爾比6:4的Cu/Ce/γ-Al2O3觸媒,加H2O和未加H2O情況下,CO轉化率與反應溫度關係圖(實線為表格2-3中B種的進料方式,虛線則為表格2-3中C種的進料方式) 52
圖3-27 CuO-CeO2系列觸媒加入H2O時,CO轉化率相對於反應溫度比較圖(表格2-3中C種的進料方式) 53
圖3-28 CuO-CeO2、Cu/Ce/γ-Al2O3觸媒加入H2O時,CO轉化率相對於反應溫度比較圖(表格2-3中C種的進料方式) 53
圖3-29 於不同比例下的觸媒加入3%的H2O時,CO選擇率相對於反應溫度比較圖(表格2-3中C種的進料方式) 54
圖3-30 加入H2O和CO2 情況下,不同比例的觸媒,反應溫度相對於CO轉化率比較圖(表格2-3中A種的進料方式) 56
圖3-31 加入H2O和CO2 情況下,不同類型的觸媒,反應溫度相對於CO轉化率比較圖(表格2-3中A種的進料方式) 56
圖F-1 氮氣恆溫吸附/脫附曲線類型 73
圖F-2 氮氣恆溫吸附/脫附曲線遲滯回圈的類型 73


表目錄
表格1-1 氧化鋁在各種溫度的相變化 5
表格2-1 共沉澱法合成觸媒所使用的金屬量 15
表格2-2 Cu/Ce/γ-Al2O3 觸媒成分 17
表格2-3 反應進料條件 25
表格3-1 CuO-CeO2和Cu/Ce/γ-Al2O3觸媒BET資料表 28
表格3-2 MCM-41系列表面積、孔洞體積、平均粒徑大小比較表 31
表格3-3 各觸媒中CuO(111)、CeO2(111)的晶粒大小 36
表格3-4 ICP成分分析結果 37
表格3-5 銅、鈰莫爾比例與觸媒活性關係表 39
表格3-6 CuO-CeO2和Cu/Ce/γ-Al2O3觸媒活性關係表 42
表格3-7 在未加CO2和加CO2的情況下,CO轉化溫度的比較 48
表格3-8 在未加H2O和加H2O的情況下,CO轉化溫度的比較 54
表格3-9 共沉澱合成的CuO-CeO2觸媒,在加入CO2和H2O的情況下,出口CO濃度比較 58
表格3-10 微溼含浸法合成的Cu-Ce/γ-Al2O3觸媒,在加入CO2和H2O的情況下,出口CO濃度比較 59
表D-1 氧化鈰CeO2 Databank 66
表D-2 氧化銅CuO Databank 66
表D-3 二氧化矽SiO2 Databank 67
表D-4 氧化鋁γ-Al2O3 Databank 67
表D-5 氧化亞銅Databank 68
表E-1 甲烷CH4檢量線 70
表E-2 水H2O檢量線 70
表G-1 前趨溶液配置成份表 74
1.Igarashi, H., Fujino T., Watanabe M.: Hydrogen electro-oxidation on platinum catalysts in the presence of trace carbon monoxide. Journal of Electroanalytical Chemistry 1995;391:119-123.
2.Beck, J. S., VartUli J. C., Roth W. J., et al.: A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Sot. 1992; 114,:10834-10843.
3.Zhao, X. S., Lu G. Q. M., Millar G. J.: Advances in Mesoporous Molecular Sieve MCM-41. Ind. Eng. Chem. Res. 1996;35:2075-2090.
4.Antochshuk, V., Araujo A. S., Jaroniec M.: Functionalized MCM-41 and CeMCM-41 Materials Synthesized via Interfacial Reactions. Journal of Physical Chemistry B 2000;104:9713-9719.
5.Mercuri, L. P., Matos J. R., Jaroniec M.: Improved thermogravimetric determination of the specific surface area for cerium-incorporated MCM-41 materials. Journal of Alloys and Compounds 2002;344:190-194.
6.Laha, S. C., Mukherjee P., Sainkar S. R., Kumar R.: Cerium Containing MCM-41-Type Mesoporous Materials and their Acidic and Redox Catalytic Properties. Journal of Catalysis 2002;207:213-223.
7.Kadgaonkar, M. D., Laha S. C., Pandey R. K., et al.: Cerium-containing MCM-41 materials as selective acylation and alkylation catalysts. Catalysis Today 2004;97:225-231.
8.王景成: 鈀-銅雙金屬觸媒之酸處理效應及其對乙炔選擇性活性之影響. 逢甲大學碩士論文 2002.
9.林世豐: 承載型銅鋅觸媒於甲醇蒸氣產氫重組的研究. 逢甲大學碩士論文 2004.
10.竇維平: 利用螢石型導氧離子氧化物擔體提昇氧化銅觸媒的還原性及催化活性之研究. 國立清華大學化學工程研究所博士論文 1995.
11.Burch, Flambard: Strong Metal-Support Interaction in Nickel/Titania Catlysts: the Importance of Interfacial Phenomena. Journal Catalysis 1982;78:389.
12.Dow, W.-P., and Huang, T.-J.,: Effects of Oxygen Vacancy of Yttria-Stabilized Zirconia Support on Carbon Monoxide Oxidation over Copper Catalyst. Journal Catalysis 1994;147:322.
13.M., j. T. O. T. M. G. a. W. J.: Temperature-Programmed Desorption of CO and CO2 from Pt/CeO2 an Important Role for Lattice Oxygen in CO Oxidation. Journal Physics Chemistry 1987;91:3310.
14.Serre C., G. F., Belot G.and Maire G.: Reactivity of Pt/Al2O3 and Pt-CeO2/Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen-I Catalyst Characterization by TPR using CO as Reducing Agent. Journal Catalysis 1993;141:1.
15.Serre C., G. F., Belot G.and Maire G: Reactivity of Pt/Al2O3 and Pt-CeO2/Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen-Influence of the Pretreatment Step on the Oxidation Mechanism. Journal Catalysis 1993;141:9.
16.Su, E. C., Rothschild W. G.: Dynamic behavior of three-way catalysts. Journal of Catalysis 1986;99:506-510.
17.Robertst, R. D. a. S.: Influence of Ceria on Alumina-Supported Rhodium: Observations of Rhodium Morphology Made Using FTIR Spectroscopy. Journal of physical chemistry 1989;93:5846-5850.
18.Tang, X., Zhang B., Li Y., et al.: Carbon monoxide oxidation over CuO/CeO2 catalysts. Catalysis Today 2004;93-95:191-198.
19.Liu W., Flytzanistephanopoulos M.: Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts : I. Catalyst Composition and Activity. Journal of Catalysis 1995;153:304-316.
20.Liu W., Flytzanistephanopoulos M.: Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts : II. Catalyst Characterization and Reaction-Kinetics. Journal of Catalysis 1995;153:317-332.
21.Avgouropoulos, G., Ioannides T., Papadopoulou C., et al.: A comparative study of Pt/g-Al2O3, Au/a-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Today 2002;75:157-167.
22.Avgouropoulos, G., Ioannides T.: Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Applied Catalysis, A: General 2003;244:155-167.
23.Kim, D. H., Cha J. E.: A CuO/CeO2 mixed-oxide catalyst for CO clean-up by selective oxidation in hydrogen-rich mixtures. Catalysis Letters 2003; 86:2003.
24.Luo, M.-F., Yuan X.-X., Zheng X.-M., Zhong Y.-J.: TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation. Applied Catalysis A: General 1997;162:121-131.
25.Tang, X., Zhang B., Li Y., et al.: CuO/CeO2 catalysts: Redox features and catalytic behaviors. Applied Catalysis A: General 2005;288:116?25.
26.Jung, C. R., Han J., Nam S. W., et al.: Selective oxidation of CO over CuO-CeO2 catalyst: effect of calcination temperature. Catalysis Today 2004;93-95:183-190.
27.Sedmak, G., Hocevar S., Levec J.: Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2-y catalyst. Journal of Catalysis 2003;213:135-150.
28.George Avgouropoulos , T. I., Haralambos K. Matralis , Jurka Batista and Stanko Hocevar: CuO - CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Letters 2001;73:33-40.
29.Park, J. W., Jeong J. H., Yoon W. L., Rhee Y. W.: Selective oxidation of carbon monoxide in hydrogen-rich stream over Cu-Ce/r-Al2O3 catalysts promoted with cobalt in a fuel processor for proton exchange membrane fuel cells. Journal of Power Sources 2004;132:18-28.
30.Liu, W., Flytzani-Stephanopoulos M.: Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over Cu/CeO2. The Chemical Engineering Journal and The Biochemical Engineering Journal 1996;64:283-294.
31.Xiaoyuan Jiang, G. L., Renxian Zhou,Jianxin Mao,Yu Chen,Xiaoming Zheng: Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts. Applied Surface Science 2001;173:208-220.
32.Pickering, B. D. i. a. S.: Nanostructured Cerium Oxide: Preparation and Properties of Weakly-agglomerated Powders. Journal of the European Ceramic Society 1999;19: 1925-1934.
33.H. Zou, Y. S. L., N. Rane,T. He: Synthesis and Characterization of Nanosized Ceria Powders and High-Concentration Ceria Sols. Ind. Eng. Chem. Res.Res 2004;43:3019-3025.
34.Cesteros Y.and Haller, G. L.: Several factors affecting Al-MCM-41 synthesis. Microporous and Mesoporous Materials 2001;43:171-179.
35.Li, Z., Gao L.: Synthesis and characterization of MCM-41 decorated with CuO particles. Journal of Physics and Chemistry of Solids 2003;64:223-228.
36.Wang, J. B., Lin S.-C., Huang T.-J.: Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria. Applied Catalysis, A: General 2002;232:107-120.
37.Manasilp, A., Gulari E.: Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Applied Catalysis, B: Environmental 2002;37:17-25.
38.Snytnikov, P. V., Sobyanin V. A., Belyaev V. D., et al.: Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts. Applied Catalysis A: General 2003;239:149-156.
39.Wan, Y., Ma J., Wang Z., et al.: Selective catalytic reduction of NO over Cu-Al-MCM-41. Journal of Catalysis 2004;227:242-252.
40.Araujo, A. S., Aquino J. M. F. B., Souza M. J. B., Silva A. O. S.: Synthesis, characterization and catalytic application of cerium-modified MCM-41. Journal of Solid State Chemistry 2003;171:371-374.
41.Sayari, A., Yang Y.: Highly Ordered MCM-41 Silica Prepared in the Presence of Decyltrimethylammonium Bromide. Journal of Physical Chemisty B 2000;104:4835 -4839.
42.Tsoncheva, T., Venkov T., Dimitrov M., et al.: Copper-modified mesoporous MCM-41 silica: FTIR and catalytic study. Journal of Molecular Catalysis A: Chemical 2004;209:125-134.
43.Hadjiivanov, K., Tsoncheva T., Dimitrov M., et al.: Characterization of Cu/MCM-41 and Cu/MCM-48 mesoporous catalysts by FTIR spectroscopy of adsorbed CO. Applied Catalysis A: General 2003;241:331-340.
44.Huang, Y.-J., Wang H. P., Lee J.-F.: Catalytic reduction of NO on copper/MCM-41 studied by in situ EXAFS and XANES. Chemosphere 2003;50:1035-1041.
45.S.Muccillo, R. A. R. a. E. N.: Preparation of nanocrystalline gadolinia doped ceria powders by combustion synthesis process. British Ceramic Transactions 2003;102.
46.Rocha, R. A., Muccillo E. N. S.: Physical and chemical properties of nanosized powders of gadolinia-doped ceria prepared by the cation complexation technique. Materials Research Bulletin 2003;38:1979-1986.
47.H. Zou, Y. S. L., N. Rane,and T. He: Synthesis and Characterization of Nanosized Ceria Powders and High-Concentration Ceria Sols. Ind. Eng. Chem. Res 2004;43:3019-3025.
48.Fu, Q., Weber A., Flytzani-Stephanopoulos M.: Nanostructured Au-CeO2 catalysts for low-temperature water gas shift. Catalysis Letters 2001;77:87-95.
49.J. A. Wang, J. M. D., A. Montoya,S. Castillo,J. Navarrete,M. Moran-Pineda,J. Reyes-Gasga,and X. Bokhimi: New Insights into the Defective Structure and Catalytic Activity of Pd/Ceria. Chem. Mater 2002;14: 4676-4683.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔