跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/13 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王文徽
研究生(外文):Wen-Hui Wang
論文名稱:鈀銀合金膜反應器進行乙醇自熱化水蒸氣重組之研究
論文名稱(外文):Study on Autothermal Steam Reforming of Ethanol in A Palladium-Silver Alloy Membrane Reactor
指導教授:張新福張新福引用關係
指導教授(外文):Hsin-Fu Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:113
中文關鍵詞:乙醇鈀銀合金膜反應器水蒸氣重組氫氣自熱化
外文關鍵詞:Auto-thermalHydrogenPalladium-Silver Alloy Membrane ReactorEthanol.Steam Reforming
相關次數:
  • 被引用被引用:1
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:1
隨著環保意識的崛起,任何會污染大自然生態的發展應用都將受到限制。為因應這股綠色潮流,研究發展新能源的產生,變成大家所重視的課題。在新能源中,以氫能源的開發最受注目。本研究的目的是探討利用鈀銀合金膜反應器進行乙醇自熱化水蒸氣重組反應生產氫氣,利用氫氣滲透的特性,在膜管的滲透端收集高純度的氫氣。本實驗所使用的鈀銀合金膜管是以無電鍍法自製而成,其膜厚約為30 μm,操作溫度範圍在320℃ ~ 450℃,壓力控制在3 ~ 9 atm,以商用觸媒MDC-3進行乙醇自熱化水蒸氣重組反應。反應物水和乙醇之莫耳比為1:1 (nH2O/nC2H5OH = 1 );而氧氣和乙醇之莫耳比範圍為0到0.7 (nO2/nC2H5OH = 0 ~ 0.7);進料流速範圍為0.39 ~ 0.63 mL/min ( WHSV= 5 ~ 8 h-1)。由實驗結果發現,加入氧氣的多寡,會決定總反應的熱平衡。當nO2/nC2H5OH = 0時,即是單純的水蒸氣重組反應,為吸熱反應,故在該反應條件下,在高溫低壓時(450℃、3 atm)有最大的乙醇轉化率82.07%。當nO2/nC2H5OH = 0.7時,則完全由氧化反應主導,為放熱反應。當nO2/nC2H5OH = 0.2時,總反應仍傾向於吸熱反應,高溫時,其反應結果接近於沒通氧時的結果,而低溫時(320℃)則可將轉化率提高至62%左右。在nO2/nC2H5OH = 0.2,WHSV= 8 h-1,9 atm,450℃時,因進料流量大且轉化率頗高,故有最大的氫氣滲透通量122.89 mole/m2*h.。
Along with environmental consciousness rising, any developments and applications which may be able to pollute the ecology will be restricted. In accordance to this green trend, searching for new energies and their development have become an important issue. Among all of the new types of energy, the evolution of hydrogen energy receives the most attention.
The goal of this study is to focus on hydrogen production by autothermal steam reforming of ethanol in a palladium-silver alloy membrane reactor. Hydrogen which only permeates through a palladium-silver alloy membrane can be collected on the permeation side with high purity. The palladium-silver alloy membrane tube used for this experiment was made by eletroless plating technique, with an overall thickness of about 30μm. An industrial catalyst MDC-3 was employed for autothermal steam reforming of ethanol reaction. The operating temperatures ranged from
320℃ to 450℃ and the pressures between 3atm to 9atm. The reactant of water/ethanol molar ratio is 1:1, the O2/ethanol molar ratio ranging between 0 to 0.7, and varying feed rate between 0.39 to 0.63 mL/min ( WHSV= 5 ~ 8 h-1). The experimental results show that the amount oxygen feed to the reactor will determine the thermal equilibrium of total reaction. It is a steam reforming reaction at nO2/nC2H5OH = 0, which is an endothermic reaction, so there is an optimal ethanol conversion of 82.07% at the lowest pressure and highest temperature (P= 3 atm, T= 450℃). When nO2/nC2H5OH = 0.7, the total reaction is dominated by the partial oxidation of ethanol, which is exothermic. At nO2/nC2H5OH = 0.2, the total reaction tends to be an endothermic reaction, but it behaves like a steam reforming reaction at high temperatures while at the low temperature (T= 320℃) the ethanol conversion is still promoted to 62% due to the presence of oxygen. At nO2/nC2H5OH = 0.2, WHSV= 8 h-1, 9 atm, and 450℃, the maximum fluxes of hydrogen of 122.89 mole/m2*h is obtained due to high feed rate and high ethanol conversion.
誌謝 I
中文摘要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
壹、前言 1
貳、原理 3
2.1氫的利用 3
2.2應用薄膜反應器產氫 3
2.3無機分離薄膜 4
2.3.1無機膜的分類 7
2.3.1.1無機膜的分離機制 7
2.3.1.2無機膜的應用型態 9
2.3.2多孔型薄膜 11
2.3.3緻密型薄膜 13
2.4無機膜反應器種類 14
2.4.1.產物移出型膜反應器 14
2.4.2.控制進料型膜反應器 14
2.4.3.催化活性型膜反應器 16
2.4.4無機膜反應器中薄膜特性要求 17
2.5鈀金屬的特性說明 18
2.5.1鈀金屬的發展由來 18
2.5.2鈀金屬之氫脆現象 18
2.5.3鈀合金穿透膜 20
2.5.4氫氣在鈀合金膜之傳送機制 26
2.6 鈀合金薄膜製備方法 31
2.6.1.化學氣相沈積法(chemical vapor deposition, CVD)【35-36】 31
2.6.2.物理氣相沈積 (physical vapor deposition, PVD) 【36】 31
2.6.3.濺鍍法(sputtering) 【37-38】 32
2.6.4.溶膠凝膠法(Sol-Gel) 【39-40】 34
2.6.5.無電鍍法(electroless plating) 【25, 28, 41-47】 34
2.7乙醇自熱化蒸氣重組反應 39
參、實驗方法與步驟 41
3.1 鈀銀合金膜管之氫氣/氮氣滲透選擇率 41
3.2乙醇自熱化蒸氣重組反應 42
3.2.1乙醇自熱化蒸氣重組反應產物之特性分析 42
3.3乙醇自熱化蒸氣重組反應的實驗步驟 48
3.3.1空白實驗(blank test) 49
3.3.2利用傳統反應器進行乙醇自熱化水蒸氣重組反應 50
3.4藥品 50
3.4.1氣相產物氣體 50
3.4.2液相產物藥品 50
3.4.3實驗用觸媒 51
3.4.4其他 51
3.5儀器裝置 51
肆、結果與討論 55
4.1鈀銀合金膜管滲透通量 55
4.2利用鈀銀膜反應器進行乙醇自熱化水蒸氣重組反應 56
4.2.1 空白實驗 56
4.2.2 不同通氧比率對乙醇轉化率的影響 56
4.2.3 不同通氧比率對CO和CO2選擇率的影響 58
4.2.4 不同WHSV比率對乙醇轉化率的影響 59
4.2.5 不同WHSV比率對CO及CO2選擇率的影響 59
4.3氫氣滲透通量 61
4.3.1氫氣滲透通量普遍之趨勢及現象 61
4.3.2 不同通氧比例之反應對氫氣滲透通量的影響 62
4.3.3 不同WHSV對氫氣滲透通量的影響 62
4.4傳統反應器進行反應 62
4.4.1 傳統反應器進行乙醇自熱化水蒸氣重組反應 63
4.4.2 傳統與鈀銀膜反應器比較乙醇自熱化水蒸氣重組反應結果 63
4.4.3 壓力與溫度對於鈀銀膜反應器提高乙醇轉化率的影響 63
伍、結論 94
陸、附錄 96
6.1乙醇自熱化水蒸氣重組可能出現的反應機構 96
6.2實驗數據的定義 96
柒、參考文獻 98
柒、參考文獻
1.林有銘,“化學工廠中新能源之利用”,化工技術6卷第3期,136-141頁 (1998)
2.林有銘,“薄膜反應器在石化製成上的應用化工技術”,第7卷第11期,218-228 頁 (1999)
3. G. A. Deluga, J. R. Salge, L. D. Schmidt, X. E. Verykios, “Renewable Hydrogen from Ethanol by Autothermal Reforming.” Science, 303, 993 (2004)
4.林永森、陶惟翰、楊淑卿,“以電漿濺鍍技術製備鈀銀合金薄膜於氫氣純化之研究”,華岡工程學報,第13卷,151-169頁 (1999)
5. Hsieh, H. P., Inorganic Membranes For Separation and Reaction, Membrane Science and Technology series, (1996)
6.鄭領英、王學松,“膜的高科技應用”,五南圖書出版股份有限公司 (2003)
7. Kragl, U., “Asic Principles of Membrane Technology,” Angew. Chem. Int. Edit., 36, 2129 (1997).
8. Shu, J., Grandjean, B. P. A. Van Neste, A and Kaliaguine, S., “Catalytic Palladium-Based Membrane Reactor: A Review,” Can. J. Chem. Eng., 69, 1036 (1991).
9. Tosotsis, T. T.,Champagnie, A. M., Vasileiadis, S. P., Ziaka, Z. D. and Minet, R. G., “The Enhancement of Reactor Yield Through The Use of High Temperature Membrane Reactors,” Separ. Sci. Technol, 28, 397 (1993).
10. Mardilovich, P. P., She, Y. and Ma, Y. H.,“Defect-Free Palladium Membrane on Porous Stainless Steel Support,” AIChE J., 44, 3101 (1998).
11. Saracoo, G. and Specchia, V., “Catalytic Inorganic-Membrane Reactor: Present Experience and Future Opportunities,” Catal. Rev. Sci Eng., 36, 305 (1994).
12. Yeung, K. L., Arvind, R., Zawada, R. J. X., Szegner, J., Cao, G. and Varma, A., “Nonuniform Catalyst Distribution for Inorganic Membrane Reactors: Theoretical Consideration and Preparation Techniques,” Chem. Eng. Sci., 49, 4823 (1995)
13. Yeung, K. L. and Varma, A., “Novel Preparation Techniques for Thin Metal-Ceramic Composite Membrane,” AIChE J., 41, 2131 (1995)
14. Li, A., Liang, W. and Hughes, R., “Characterization and Permeation of Palladium / Stainless Steel Composite Membranes,” J Membrane Sci, 149, 259 (1998)
15. Grashoof, G. J., Pilkington, C. E. and Corti, C. W., “The Purification of Hydrogen,” Platinum Metals Review, 27, 157 (1983)
16. Shu, J., B. Grandjean, P. A., A. Neste, V. and Skallaguine, “Catalytic Palladium-Based Membrane Reactor – A Review,” Can. J. Chem. Eng., 69, 1036 (1991)
17. Gobina, E. and Atnoor, D., “Ethane dehydrogenation Using a High Temperature Catalytic Membrane Reactor,” J. Membrane Sci., 90, 11 (1994)
18. Itoh, N., “Properties of a Composite Charged Reverse Osmosis Membrane,” Int. Congr. Membr. Processes, Tokyo Japan, 352 (1987)
19. 葉惠娟,“無機薄膜反應器”,專題講座,第1卷,第3期,32-41頁(1992)
20. Itoh, N., “A Membrane Reactor Using Palladium,” AIChE J., 33, 1576 (1987)
21. Shu, J., B. Grandjean, P. A., A. Neste, V. and Skallaguine, “Catalytic Palladium-Based Membrane Reactor – A Review,” Can. J. Chem. Eng., 69, 1036 (1991)
22. Gobina, E. and Atnoor, D., “Ethane dehydrogenation Using a High Temperature Catalytic Membrane Reactor,” J. Membrane Sci., 90, 11 (1994)
23. Buxbam, R. E. and Marker, T. L., “Hydrogen Transport through Non-porous Membranes of Palladium-coated Niobium, Tantalum and Vanadium,” J. Membrane Sci., 85, 29 (1993)
24. Yan, S. C., Meada, H., Kusakabe, K. and Morooka, S., “Thin Palladium films Formed in Support Pore by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation,”Ind. Eng. Chem. Res., 33, 616 (1994)
25. 林有銘,周窈朱,莊鉦賢,劉淑鈴,黃家銘,林修正“新型氫氣生產製程開發暨應用”工業技術研究院能源與資源研究所(1998)
26. Lewis, F. A. The Palladium Hydrogen System, Academic Press, London (1967)
27. Uemiya, S., T. Matsuda, and Kikuchi, E., “Hydrogen Permeable Palladium-silver Alloy Membrane Supported Porous Ceramics,” J. Membrane Sci, 56, 315 (1991a)
28. Sue, J., Grandjean, B. P. A., Ghali, E. and Kaliaguine, S.,“Simultaneous Deposition on Pd and Ag on Porous Stainless stell by Electroless Plating,” J. Membrane. Sci., 77, 181 (1993)
29. Uemiya S., “State-of-the-Art of Supported Metal Membranes for Gas Separation,” Separation and purification Methods, 28, 51 (1999)
30. Barrer, R. M., Diffusion in and trough Solids, Cambridge University Press, London (1951)
32. Itoh, N., Shindo, Y. and Haray, K., “Ideal Flow Models For Palladium Membrane Reactors,” J. Chem. Eng. Jan., 23, 420 (1990)
33. Franckaerts, J. and Forment, G. F. “Kinetic Study of the Dehydrogenation of ethanol,” Chem. Eng. Sci., 19, 807 (1964)
34. S. Uemiya, State-of-the-Art of Supported Metal Membrane for Gas Separation, Separation and Purification Methods,28,51-85(1999)
35. Xomeritakis, G. and Lin, Y. S., “Fabrication of a Thin Palladium Membrane Supported in a Porous Ceramic Substrate by Chemical Vapor Deposition,” J. Membrane. Sci., 120, 261 (1996)
36. Kikuchi, E., “Steam Reforming of Methane in Membrane Reactor: Comparison of Electroless-Plating and CVD Membrane and Catalyst Packing Modes,” Catal. Today, 56, 75 (2000)
37. Jayaraman, V., Lin, Y. S., Pakala, M. and Lin, R. Y., “Fabrication of Ultrathin Metallic Membranes on Ceramic Support by Sputtering Deposition,” J. Membrane Sci., 99, 89 (1995)
38. McCool, B., Xomeritakis, G. and Lin, Y. S., “Composition Contril and Hydrogen Permeation Characteristics of Sputter Deposited Palladium-Silver Membranes,” J. Membrane Sci., 161, 67 (1999)
39. 黃定加,陳慧英,「陶瓷薄膜」,化工,40,3(1993)
40. 蔣孝澈,「溶凝膠製作與應用專輯」,化工,46,12(1999)
41. Collins, J. P. and Way, J. D., “Preparation and Characterization of Composite Palladium – Ceramic Membrane,” Ind. Eng. Chem. Res., 32, 3006 (1993)
42. Govind, R. and Atnoor, D., “Development of a composite Palladium Membrane for Selective Hydrogen Separation at Hugh Temperature,”Ind. Eng. Chem. Res., 30, 591 (1991)
43. Yeung, K. L., Sebastian, J. M. and Varma, A., “Novel Preparation of Pd / Vycor Composite Membranes,” Catal. Today, 25, 231 (1995)
44. Li, A., Xing, G., J. Gu, and Zheng, L., “Preparation of Pd / Ceramic Membrane – Improvement of the conventional Preparation Technique,” J. Membrane Sci., 110, 257 (1996)
45. D. A. P. Tanaka, M. A. L. Tanco, Shu. Niwa, Y. Wakui, F. Mizukami, T. Namba, and T. M. Suzuki, “Preparation of Palladium and Silver Alloy Membrane on a porous α-alumina Tube via Simultaneous Electroless Plating,” J. Membrane Sci., 247, 21 (2005)
46. L. Yang, Z. Zhang, X. Gao, Y. Guo, B. Wang, O. Sakai, H. Sakai, T. Takahashi, “Changes in Hydrogen Permeability and Surface State of Pd-Ag/ceramic Composite Membranes after Thermal Treatment, “J. Membrane Sci., 252, 145 (2005)
47. C. Su, T. Jin, and K. Kuraoka, “Thin Palladium Film Supported on SiO2-Modified Porous Stainless Steel for a High-Hydrogen-Flux Membrane, “ Ind. Eng. Chem. Res. 44, 3053 (2005)
48. Klouz, V., Fierro, V., Denton, P., Katz, H., Lisse, J.P., Bouvot-Mauduit, S., and Mirodatos, C., “Ethanol Reforming for Hydrogen Production in a Hybrid Electric Vehicle﹕Process Optimisation,” J. Power Sources, 105, 26 (2002).
49. Fierro, V., Klouz, O., Akdim, C., Mirodatos, C., “Oxidative Reforming of Biomass Derived Ethanol for Hydrogen Production in Fuel Cell Applications,” Cataly. Today, 75, 141 (2002a)
50. Fierro, V., Akdim, O., Mirodatos, C., “On-board Hydrogen Production in a Hybrid Electric Vehicle by Bio-ethanol Oxidative Steam Reforming over Ni and Noble Metal Based Catalysts,” Green Chemistry, 5, 20 (2003)
51. Cavallaro, S., Chiodo, V., Freni, S., Mondello, N., Frusteri, F., “Performance of Rh/Al2O3 Catalyst in the Steam Reforming of Ethanol: H2 Production for MCFC,” Appl. Catal. A; 249, 119 (2003)
52. Cavallaro, S., Chiodo, V., Vita, A., Freni, S., “Hydrogen Production by Auto-thermal Reforming of Ethanol on Rh/Al2O3 Catalyst,” J. Power Sources, 123, 10 (2003)
53. Ioannides, T., ”Thermodynamic Analysis of Ethanol Processors for Fuel Cell Applications,” J. Powder Sources, 92, 17 (2001).
54. Velu, S., Satoh, N., Gopinath, C.S., amd Suzuki, K., “Oxidative Reforming of Bio-ethanol over CuNiZnAl Mixed Oxide Catalysts for Hydrogen Production,” Catal. Lett., 82, 145 (2002).
55. Itoh, N., Kaneko, Y., and Igarashi, A., “Efficient Hydrogen Production via Methanol Steam Reforming by Preventing Back-permeation of Hydrogen in a Palladium Membrane Reactor”Ind. Eng. Chem. Res. 2002,41,4702-4706
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top