(3.234.221.162) 您好!臺灣時間:2021/04/14 15:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐楠昌
研究生(外文):Nan-Chang Hsu
論文名稱:承載型銅鋅觸媒於甲醇蒸汽產氫重組的研究
論文名稱(外文):The Study of Hydrogen Production by Steam Reforming of Methanol over Supported Copper-Zinc Catalyst
指導教授:張振昌
指導教授(外文):Alex C.-C. Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:90
中文關鍵詞:一氧化碳選擇率銅觸媒SBA-15水蒸氣重組反應
外文關鍵詞:CO selectivitySBA-15Copper-base catalystSteam Reforming of Methanol
相關次數:
  • 被引用被引用:3
  • 點閱點閱:329
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本研究以銅系觸媒為主,應用於甲醇水蒸氣重組產氫。使用商用觸媒MDC3為參考觸媒,並且使用共沉澱法以及微濕含浸法自行製備觸媒。以共沉澱法合成Cu/Zn/Al觸媒。而微濕含浸法所使用載體為商用載體γ-Al2O3以及自行合成高表面積中孔洞矽鋁載體SBA-15,再將銅、鋅擔載其上,即為Cu/Zn/γ-Al2O3及Cu/Zn/SBA-15。欲藉由SBA-15高表面積提升觸媒表面濃度。特性分析方面使用XRD確定觸媒結構,BET量測觸媒表面積,AA量測觸媒含量。在活性測試方面將四種觸媒以三種溫度(230℃、250℃、270℃)四種壓力下(1bar、4bar、7bar、10bar)以傳統反應器去探討觸媒轉化率及選擇率,找尋可降低一氧化碳選擇率之反應條件,增加重組器於燃料電池上之運用。
由實驗結果得知於高壓時甲醇轉化率會有上升情形,此一現象應屬未達平衡轉化率,以Cu/Zn/SBA-15而言,在270℃、10bar下,一氧化碳選擇率低於Cu/Zn/γ-Al2O3、Cu/Zn/Al、MDC3,且單位觸媒重的氫氣產量優於MDC3。由XRD以及BET結果顯示,SBA-15擔載銅、鋅後有觸媒結構崩垮及表面積下降現象,推斷為二次鍛燒所造成,因此未能有效利用到高表面積。
In this study Copper-based catalysis were applied in steam reforming of methanol to generate hydrogen. MDC3 (commercial catalysis) is the reference catalyst and Cu/Zn/Al catalyst homemade was prepared by co-precipitation method. The commercial support γ-Al2O3 and the synthesized SBA-15 using incipient wetness method to add the active centers (copper and zinc) onto the support were prepared (Cu/Zn/γ-Al2O3 and Cu/Zn/SBA-15). High surface area support SBA-15 may increase the activity of the surface. Properties of structure, surface and composition of catalysts were characterized by XRD, small angle XRD, BET, AA. The activity of the catalysts was determined by a fixed bed reactor in different temperature (230℃, 250℃, 270℃) and pressure (1bar, 4bar, 7bar, 10bar), using GC for the compositional analysis. Find best control to decrease CO selectivity, which is beneficial to be used in the reformer for fuel cell application.
In the experimental result, the conversion of methanol increase with increase of pressure, the state is not arrive equilibrium conversion. At 270℃, 10 bar, CO selectivity of Cu/Zn/SBA-15 is lower than those of Cu/Zn/γ-Al2O3, Cu/Zn/Al, MDC3. As far as the hydrogen production is concerned, Cu/Zn/SBA-15 is batter than MDC3. According to result of XRD and BET show that the structure of Cu/Zn/SBA-15 was broken out and the value of surface area decreased, which may cause by calcining in the second time, so that we can’t use the high surface area effectively.
目錄
摘要..............................................I
Abstract.......................................II
目錄..........................................III
圖目錄........................................VII
表目錄.........................................IX
第一章 緒論.....................................1
1-1前言.........................................1
1-2 燃料電池....................................2
1-3 甲醇蒸氣重組反應............................4
1-4 甲醇水蒸氣重組觸媒..........................5
1-4-1 觸媒介紹..................................5
1-4-1-1 貴金屬系................................5
1-4-1-2 鎳系....................................5
1-4-1-3 銅系....................................6
1-4-2 促進劑....................................6
1-4-3 分子篩介紹................................7
1-4-3-1 沸石....................................8
1-4-3-2 氧化鋁..................................8
1-4-3-3 SBA-15..................................9
第二章 實驗方式與分析..........................11
2-1 觸媒製備...................................11
2-1-1 SBA-15的合成.............................11
2-1-2 微濕含浸法(Incipient Wetness)............11
2-1-3 共沉澱法(Co-Precipitation)...............12
2-2 觸媒特性分分析 .............................13
2-2-1 X-ray粉末繞射儀..........................13
2-2-1-1 小角度X-ray粉末繞射儀分析(Small Angel X-ray Diffractometer)............................13
2-2-1-2 一般角度X-ray粉末繞射儀分析(X-ray Diffractometer)................................14
2-2-2 比表面積分析儀(Accelerated Surface Area and Porosimetry Analyser)......................16
2-2-3 原子吸收光譜儀(Atomic Absorption spectrophotometer) .............................17
2-2-5 觸媒活性分析 .............................19
第三章 實驗與分析結果..........................21
3-1 X-ray粉末繞射圖譜..........................21
3-2 比表面積分析結果...........................24
3-3 成分分析結果...............................29
3-4 觸媒活性分析結果...........................30
3-4-1 甲醇水蒸氣重組反應於不同溫度、壓力下對轉化率、產率、選擇率作圖...........................30
3-4-2 活性分析結果.............................37
3-4-2-1 觸媒於不同溫度、壓力下甲醇轉化率.......37
3-4-2-2 觸媒於不同溫度、壓力下水轉化率.........37
3-4-2-3 觸媒於不同溫度、壓力下氫氣產率.........38
3-4-2-3 觸媒於不同溫度、壓力下一氧化碳產率.....38
3-4-2-4 觸媒於不同溫度、壓力下二氧化碳產率.....39
3-4-2-5 觸媒於不同溫度、壓力下一氧化碳選擇率...39
第四章 結論與展望..............................40
附錄...........................................43
附錄A 實驗儀器裝置.............................43
附錄B 藥品.....................................44
附錄C 前驅溶液配置 .............................45
附錄D 檢量線...................................46
附錄E 氣相層析儀軟硬體參數設定.................48
E-1 硬體參數設定...............................48
Ⅰ 移動相......................................48
Ⅱ 固定相 ......................................48
Ⅲ 檢測器 ......................................48
E-2 軟體參數設定...............................50
附錄F 常見氣體熱傳導度.........................53
附錄G SBA-15 SAXRD文獻圖譜資料.................54
附錄H Databank資料 .............................55
附錄I BET數據原始資料..........................57
附錄J 熱力學計算...............................60
附錄K 甲醇蒸氣重組文獻整理.....................65
附錄L SBA-15合成參考文獻整理...................70
附錄M 參考文獻.................................74
1.Edwards, N., Ellis, Suzanne R.E., Frost, J.C.; Golunski, S.E., van Keulen,A.N.J., Lindewald, N.G. and Reinkingh, J.G.: On-Board Hydrogen Generation for Transport Applications: the HotSpot? Methanol Processor. Journal of Power Sources 1998;71:123.
2.Eliasson, B., Bossel U.: Bright or Bleak? THE FUEL CELL WORLD,Lucerne/Switzerland. The Future of the Hydrogen Economy 2002.
3.Amphlett, J. C., Creber K.A.M., Davis J.M., al. e.: Hydrogen Prouction by Steam Reforming of Methomal for Polymer Electrolyte Fuel Cell. Int. J.Hydrogen Energy 1994;19:131.
4.Zhao, D., Feng J., Huo Q., et al.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science (Washington, D. C.) 1998;279:548-552.
5.蔡克群:"燃料電池導論"化工技術第10卷第6期.
6.Matsumura, Y., Kuraoka K., Yazawa T., Haruta M.: Production of Carbon Monoxide and Hydrogen by Methanol Decomposition over Nickel Dispersed on Porous Glass. Catalysis Today 1998;45:191-196.
7.Peppley, B. A., Amphlett J. C., Kearns L. M., Mann R. F.: Methanol Steam Reforming on Cu/ZnO/Al2O3 Catalysts. Part 2. A Comprehensive Kinetic Model. Applied Catalysis A: General 1999;179:31-49.
8.Peppley, B. A., Amphlett J. C., Kearns L. M., Mann R. F.: Methanol-Steam Reforming on Cu/ZnO/Al2O3. Part 1. The Reaction Network. Applied Catalysis A: General 1999;179:21-29.
9.Shen, J. P., Song C.: Influence of Preparation Method on Performance of Cu/Zn-Based Catalysts for Low-Temperature Steam Reforming and Oxidative Steam Reforming of Methanol for H2 Production for Fuel Cells. Catalysis Today 2002;77:89-98.
10.Segal, S. R., Anderson K. B., Carrado K. A., Marshall C. L.: Low Temperature steam Reforming of Methanol over Layered Double Hydroxide-Derived Catalysts. Applied Catalysis A: General 2002;231:215-226.
11.Agrell, J., Hasselbo K., Jansson K., et al.: Production of Hydrogen by Partial Oxidation of Methanol over Cu/ZnO Catalysts Prepared by Microemulsion Technique. Applied Catalysis A: General 2001;211:239-250.
12.Agrell, J., Birgersson H., Boutonnet M.: Steam Reforming of Methanol over a Cu/ZnO/Al2O3 Catalyst: A Kinetic Analysis and Strategies for Suppression of CO Formation. Journal of Power Sources 2002;106:249-257.
13.Agrell, J., Birgersson H., Boutonnet M., et al.: Production of Hydrogen from Methanol over Cu/ZnO Catalysts Promoted by ZrO2 and Al2O3. Journal of Catalysis 2003;219:389-403.
14.Agrell, J., Boutonnet M., Melian-Cabrera I., Fierro J. L. G.: Production of Hydrogen from Methanol over Binary Cu/ZnO Catalysts. Applied Catalysis A: General 2003;253:213-223.
15.Agrell, J., Germani G., Jaras S. G., Boutonnet M.: Production of Hydrogen by Partial Oxidation of Methanol over ZnO-supported Palladium Catalysts Prepared by Microemulsion Technique. Applied Catalysis A: General 2003;242:233-245.
16.Lindstrom, B., Pettersson L. J.: Steam Reforming of Methanol over Copper-Based Monoliths: The Effects of Zirconia Doping. Journal of Power Sources 2002;106:264-273.
17.Lindstrom, B., Pettersson L. J., Menon P. G.: Activity and Characterization of Cu/Zn, Cu/Cr and Cu/Zr on r-Alumina for Methanol Reforming for Fuel Cell Vehicles. Applied Catalysis A: General 2002;234:111-125.
18.Reitz, T. L., Ahmed S., Krumpelt M., et al.: Characterization of CuO/ZnO Under Oxidizing Conditions for The Oxidative Methanol Reforming Reaction. Journal of Molecular Catalysis A: Chemical 2000;162:275.
19.Reitz, T. L., Lee P. L., Czaplewski K. F., et al.: Time-Resolved XANES Investigation of CuO/ZnO in The Oxidative Methanol Reforming Reaction. Journal of Catalysis 2001;199:193-201 :.
20.Cubeiro, M. L., Fierroy J. L. G.: Partial Oxidation of Methanol over Supported Palladium Catalysts. Applied Catalysis A: General 1998;168:307-322.
21.Velu, S., Suzuki K., Osaki T.: Selective Production of Hydrogen by Partial Oxidation of Methanol over Catalysts Derived from CuZnAl-Layered Double Hydroxides. Catalysis Letters 1999;62:159-167.
22.Velu, S., Suzuki K., Osaki T.: Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts; A New and Efficient Method for The Production of CO- Free Hydrogen for Fuel Cells. Chemical Communications 1999:2341-2342.
23.Velu, S., Suzuki K., Okazaki M., et al.: Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for The Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation. Journal of Catalysis 2000;194:373-384.
24.Velu, S., Suzuki K., Kapoor M. P., et al.: Selective Production of Hydrogen for Fuel Cells via Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts. Applied Catalysis A: General 2001;213:47-63.
25.Lindstrom, B., Pettersson L. J.: Hydrogen Generation by Steam Reforming of Methanol over Copper-Based Catalysts for Fuel Cell Applications. International Journal of Hydrogen Energy 2001;26:923-933.
26.Idem, R. O., Bakhshi N. N.: Kinetic Modeling of The Production of Hydrogen from The Methanol-Steam Reforming Process over Mn-Promoted Coprecipitated Cu-Al Catalyst. Chemical Engineering Science 1996;51:3697-3708.
27.李訂粵 編著:"觸媒的原理與應用" 中正書局.
28.IUPAC Mannal of Symbols and Terminoligy,Appendix 2,Pt.1,Collid and Surface Chemistry. In"Pure Appl.Chem." 1972:578.
29.Zhao, D., Huo Q., Feng J., et al.: Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998;120:6024-6036.
30.Zhao, D., Sun J., Li Q., Stucky G. D.: Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chemistry of Materials 2000;12:275-279.
31.林世豐:承載型銅鋅觸媒於甲醇蒸氣產氫重組的研究.逢甲大學. 2004.
32.胡興中 編譯:"觸媒原理與應用" 高立書局.
33.Ling, Y.-M., Rei M.-H.: Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor. Catalysis Today 2001;67:77-84.
34.Choi, Y., Stenger H. G.: Fuel Cell Grade Hydrogen from Methanol on a Commercial Cu/ZnO/Al2O3 Catalyst. Applied Catalysis B: Environmental 2002;38:259-269.
35.Liu, S., Takahashi, K. and Ayabe, M.: Hydrogen Production by Oxidative Methanol Reforming on Pd/ZnO Catalyst : Effects of Pd Loading. Catalysis Today 2003;87.
36.Miyao, T., Yamauchi, Masaya, Naito and Shuichi pp: Liquid Phase Methanol Reforming with Water over Silica Supported Pt-Ru Catalysts. Catalysis Today 2003;87:227.
37.Asprey, S. P., Wojciechowskia, B.W. and Peppley, B.A.: Kinetic Studies Using Temperature-Scanning:The Steam-Reforming of Methanol. Applied Catalysis A: General 1999;179:51.
38.Takezawa, N., Iwasa, N.: Steam Reforming And Dehydrogenation of Methanol: Difference in the Catalytic Functions of Copper And Group VIII Metals. Catalysis Today 1997;36:45.
39.Luan, Z., Hartmann M., Zhao D., et al.: Alumination and Ion Exchange of Mesoporous SBA-15 Molecular Sieves. Chemistry of Materials 1999;11:1621-1627.
40.Nie, C., Huang L., Zhao D., Li Q.: Performance of Pt/Al-SBA-15 catalysts in hydroisomerization of n-dodecane. Catalysis Letters 2001;71:117-126.
41.Konya, Z., Puntes V. F., Kiricsi I., et al.: Novel Two-Step Synthesis of Controlled Size and Shape Platinum Nanoparticles Encapsulated in Mesoporous Silica. Catalysis Letters 2002;81:137-140.
42.Liu, Y.-M., Cao Y., Yan S.-R., et al.: Highly Effective Oxidative Dehydrogenation of Propane Over Vanadia Supported on Mesoporous SBA-15 Silica. Catalysis Letters 2003;88:61-67.
43.Byambajav, E., Ohtsuka Y.: Hydrocracking of asphaltene with metal catalysts supported on SBA-15. Applied Catalysis, A: General 2003;252:193-204.
44.Wang, J., Zhu H.-O.: Alkylation of 1-dodecene with benzene over H3PW12O40 supported on mesoporous silica SBA-15. Catalysis Letters 2004;93:209-212.
45.Li, L., Shi J.-l., Yan J.-n., et al.: Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation. Applied Catalysis, A: General 2004;263:213-217.
46.Li, T., Wong S.-T., Chao M.-C., et al.: n-Pentane isomerization over platinum-promoted W/Zr mixed oxides supported on mesoporous silica. 2004 2004;261:211-219.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔