跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/05 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅泳中
研究生(外文):Yung-Chung Lo
論文名稱:氮源種類與碳-氮-磷比對連續醱酵產氫之影響
論文名稱(外文):Effects of Nitrogen Source and C-N-P Ratio on Continuous Fermentative Hydrogen Production
指導教授:林屏杰
指導教授(外文):Ping-Jei Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:159
中文關鍵詞:醱酵產氫
外文關鍵詞:Fermentative Hydrogen Production
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1078
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
一般而言,醱酵培養基的碳、氮、磷比例將直接影響菌體的生長與代謝情形,且為避免未來暗醱酵(dark fermentation)與光醱酵(photo fermentation)產氫系統串聯整合時,暗醱酵系統之出流水含過量的氨氮而抑制光醱酵系統之產氫效能,本研究針對CSTR (continuous flow stirred tank reactor)與AGSB(anaerobic granular sludge bed)兩類型之暗醱酵產氫系統,探討產氫污泥在各種不同氮源種類及C-N-P比條件下之連續醱酵產氫行為,期能藉此獲取較佳之氮源種類及最適C-N-P比。
對於CSTR系統,本研究首先探討不同氮源(氯化銨、尿素、麩胺酸)及不同C/N比(8-60)對產氫效能之影響,實驗以果糖濃度20 g-COD/L、HRT = 8 h進行測試。結果顯示,各試程中以氯化銨為氮源之產氫表現最佳,而該試程之菌體濃度隨C/N比增加而呈現下降之趨勢,但是產氫速率與比產氫速率在C/N比40時呈現高峰,產氫速率及氫氣產率分別可達0.59 L/h/L及1.90 mol H2/mol fructose,顯示當氮源濃度不足時,菌體繁殖生長受到影響,導致產氫效率不彰,然而高氮源濃度雖對菌體生長有所幫助,但對於代謝產氫卻呈現負面之效應,此外,其出流水中NH4+殘餘濃度亦僅約為25 mg/L,顯示適當的C/N比不僅可有效提昇產氫效能,且不至於會對光合菌產氫造成抑制。據此,本實驗進一步探討C/P比(200~600)之效應,結果顯示產氫速率與氫氣產率在C/P比450時表現最佳,分別可達0.71 L/h/L及2.28 mol/mol fructose。結合二者之實驗結果,CSTR醱酵產氫之適當C-N-P比為450:11:1。
關於AGSB系統,本研究結合回應曲面法(response surface methodology, RSM)企圖尋求最佳之C-N-P比,實驗以蔗糖濃度20 g-COD/L分別進行HRT = 4, 2, 1 h之操作,各試程之實驗結果經多項式回歸分析及反應曲面分析均可獲得最佳之C-N-P比,分別為(365:13:1)、(369:12:1)、(365:12:1),其比例關係可謂相當接近,其回歸方程式分別如下所示,其所預測之最高產氫速率分別為0.74、2.16及4.36 L/h/L。
HPR (HRT = 4 h) = 0.7254 – 0.0635x1 + 0.0165x2 – 0.0582x12 – 0.036x22 + 6.082*E-15x1x2 ( R2 = 0.97)
HPR (HRT = 2 h) = 2.1062 – 0.1918x1 + 0.0841x2 – 0.2375x12 – 0.2130x22 + 0.0065x1x2
R2 = 0.99
HPR (HRT = 1 h) = 4.099 – 0.7706x1 + 0.22291x2 – 0.6262x12 – 0.424x22 + 0.0525x1x2
R2 = 0.98
This study aimed to explore the effect of the ratio of carbon, nitrogen, and phosphate sources (C-N-P ratio) on hydrogen production from dark fermentation. In general, the C-N-P ratio in the fermentation medium would directly affect the cell growth and metabolism. Moreover, for the integration of dark and photo hydrogen fermentation systems, the nitrogen content in the effluent of dark fermentation process should be limited to a low level to avoid inhibition to photo hydrogen production. This study investigate the hydrogen production performance of continuous flow stirred tank reactor (CSTR) and anaerobic granular sludge bed (AGSB) under different nitrogen source and C-N-P ratios in order to enhance hydrogen productivity by using a better nitrogen source and an optimal C-N-P ratio.
For the CSTR system, this work investigated the effect of nitrogen source (NH4Cl, urea, glutamate) and C/N ratio (8-60) on hydrogen production performance. The experiments were conducted by using a carbon substrate (fructose) concentration of 20 g-COD/L and a HRT of 8 h. The results show that NH4Cl was the best nitrogen source. Using NH4Cl as the nitrogen source, the biomass concentration decreased with an increase in the C/N ratio, while the highest hydrogen production rate (0.59 L/h/L) and yield (1.90 mol H2/mol fructose) were obtained at a C/N ratio of 40. This suggests that when nitrogen source concentration was too low, cell growth was limited, leading to a poor hydrogen production. In contrast, higher nitrogen concentration favored cell growth but had negative effect on hydrogen production when its concentration got too high. Moreover, when C/N ratio was 40, the NH4+ concentration in the effluent was limited to approximately 25 mg/L, indicating that a proper C/N ratio not only enhanced hydrogen producing efficiency, but also provided a suitable nitrogen content for downstream hydrogen production by photosynthetic bacteria. Based on the optimal C/N ratio of 40, this study further investigated the effect of C/P ratio (200~600). The results show that a C/P ratio of 450 gave the highest hydrogen production rate and hydrogen yield, which was 0.71 L/h/L and 2.28 mol/mol fructose, respectively. Combining the optimal C/N and C/P ratios gave an optimal C-N-P ratio of 450:11:1 for the CSTR system.
For the AGSB system, the response surface methodology (RSM) was applied to approach the optimal C-N-P ratio. The experiments were carried out with a sucrose concentration of 20 g-COD/L and a HRT of 1-4 h. Nonlinear regression with polynomial equation and RSM analysis show that the optimal C-N-P ratio for HRT = 4, 2, and 1 h was (365:13:1), (369:12:1), and (365:12:1), respectively, suggesting that the optimal C-N-P ratio was quite similar irregardless of variations in HRT. The regression equations and estimated coefficients are shown as follows.
HPR (HRT = 4 h) = 0.7254 – 0.0635x1 + 0.0165x2 – 0.0582x12 – 0.036x22 + 6.082*E-15x1x2 R2 = 0.97
HPR (HRT = 2 h) = 2.1062 – 0.1918x1 + 0.0841x2 – 0.2375x12 – 0.2130x22 + 0.0065x1x2
R2 = 0.99
HPR (HRT = 1 h) = 4.099 – 0.7706x1 + 0.22291x2 – 0.6262x12 – 0.424x22 + 0.0525x1x2
R2 = 0.98
Using the optimal C-N-P ratio, the predicted maximum hydrogen production rate was 0.74, 2.16, and 4.36 L/h/L for HRT=4, 2, and 1 h, respectively.
中文摘要…………………………………………………………………………..……..Ⅰ
Abstract…………………………………………………….……………………..……. Ⅲ
目錄……………………………………………………………………………..………..Ⅴ
圖目錄……………………………………………………………………………..……..Ⅸ
表目錄…………………………………………………………………………………..XII

第一章 緒論…………………………...…………………………………………..…….1
1-1 研究動機………………………………..…………………………………...….1
1-2 研究目的……………………………………..…….………………….…….….2

第二章 文獻回顧與產氫原理………..……………………………………………..…..3
2-1 文獻回顧……..…………………………………………………….…………...3
2-2 生物產氫的價值與應用…………………………………………………….….5
2-3 產氫方法…………………………………………………………....……….….6
2-3-1 熱化法………………………………………………………………...……6
2-3-2 電化學法…………………………………………………...…..……..……7
2-3-3 生物法………………………………………...……………….……...……7
2-3-3-1 生物法產氫之過程分類………………………………….…….……11
2-3-3-2 生物法產氫之原理略述如下…………………………………..……11
2-4 細菌的生長與生長曲線…………………………………………........………17
2-5 影響細胞生長的條件…………………………………………………........…19
2-5-1 溫度………………………………………………….…………..……..…20
2-5-2 酸鹼度(pH值) …………………………………………..…………….…22
2-5-3 溼度…………………………………………………………...………..…23
2-5-4 氣體…..………………………………………….………………...…...…24
2-5-5 滲透壓……..…………………………………….……...……………...…25
2-5-6 氫分壓………...………………………………….……………..……...…26
2-6細菌的營養需求與營養型別……………………………………….….………26
2-6-1 細菌的基本營養需求要素…………………………………..…….……..26
2-6-2 細菌的基本營養行型別…...…………………………………..……..…..31
2-7 內孢子菌……………………………………………………………..………..32
2-7-1 激活…………………………………………………………….…….…...33
2-7-2 萌發孢子……………………………………………………….…….…...34
2-7-3 生出菌體…………………………………………………………..……...34
2-7-4 芽孢桿菌屬(Bacillus) ………………………………………….…….…..35
2-7-5 梭孢桿菌屬(Clostridium) …………………………………..……………36
2-8 氧化-還原的平衡…......………………………………………………..……39
2-9 回應曲面法(response surface methodology,簡稱RSM)……………..……40
2-9-1 回應曲面法之介紹…………………………………………………..…...40
2-9-2 回應曲面法之原理…………………………………………………….....40
2-9-3 中間混成設計………………………………………………………….....42
第三章 實驗材料及方法………………………………………………………..……..43
3-1 藥品試劑與培養基…..…….…………………………………………….……43
3-1-1碳源…………………………………………………………………..……43
3-1-2緩衝鹽類………………………………………………………………..…43
3-1-3無機鹽類……………………………………………………………..……43
3-1-4其它…………………………………………………………………..……43
3-2 培養基濃度…..….……………………………………………………….……44
3-3 污泥來源…………...…………………………………………………….……44
3-4 分析儀器及方法……...………………………………………………….……44
3-4-1氣體組成分析……………………………………………………….….…44
3-4-2液體組成分析……………………………………………………….….…45
3-4-3菌量分析……………………………………………………………..……45
3-4-4總糖定量……………………………………………………………..……46
3-4-5測氨氮濃度之方法…………………………………………………..……47
3-4-6測磷濃度之方法…………………………………………………….….…48
3-5 高解析可變真空掃瞄式電子顯微鏡(VVSEM)觀察樣本製備...…….….......48
3-6 連續式產氫實驗儀器裝置與方法………...…………………………….……49
3-6-1 實驗儀器……...…………………………………………………….…….49
3-6-2 探討不同氮源試程及不同C/N比試程之實驗操作步驟……………….49
3-6-3 探討不同C/P比試程之實驗操作步驟………………………….….……50
3-6-4以RSM實驗設計探討不同C/N/P比試程之實驗操作步驟…….……..52
第四章 結果與討論…………………………………………………………….….…..56
4-1 以CSTR探討不同氮源及C/N比之試程………………………………..…..56
4-1-1 氮源為氯化銨,C/N比為8之連續醱酵產氫試程………….……………56
4-1-2 氮源為氯化銨,C/N比為15之連續醱酵產氫試程………….…………56
4-1-3 氮源為氯化銨,C/N比為26之連續醱酵產氫試程………….…………56
4-1-4 氮源為氯化銨,C/N比為34之連續醱酵產氫試程………….…………56
4-1-5 氮源為氯化銨,C/N比為40之連續醱酵產氫試程………….…………57
4-1-6 氮源為氯化銨,C/N比為50之連續醱酵產氫試程………….…………57
4-1-7 氮源為氯化銨,C/N比為60之連續醱酵產氫試程………….…………57
4-1-8 氮源為尿素,C/N比為8之連續醱酵產氫試程……….…….…………57
4-1-9 氮源為尿素,C/N比為26之連續醱酵產氫試程………….….………57
4-1-10 氮源為尿素,C/N比為40之連續醱酵產氫試程……………….………57
4-1-11 氮源為麩胺酸,C/N比為8之連續醱酵產氫試程……….……...……58
4-1-12 氮源為麩胺酸,C/N比為26之連續醱酵產氫試程……….…….……58
4-1-13 氮源為麩胺酸,C/N比為40之連續醱酵產氫試程………….….……58
4-1-14 溶解態代謝產物分析、基質利用率及剩餘之氨氮濃度……….……....58
4-1-15 各個不同氮源及C/N比試程之比較………………………………...…59
4-2 以CSTR探討不同氮源及C/P比之試程….………………………………..77
4-2-1 C/P比=200之連續醱酵產氫試程……...…….…………………………..77
4-2-2 C/P比=340之連續醱酵產氫試程……………………………………......77
4-2-3 C/P比=450之連續醱酵產氫試程…………….……………………..…...77
4-2-4 C/P比=600之連續醱酵產氫試程…………….……………………..…...77
4-2-5 溶解態代謝產物分析、基質利用率、剩餘之氨氮濃度及剩餘之磷
濃度……………………………………………………………………..…78
4-2-6 各個不同C/P比試程之比較………………………………….……..…...78
4-3 以RSM實驗設計探討AGSB系統於不同C/N/P比試程………………...…87
4-3-1 RSM實驗設計法其(1,1)試程……………………………….…………...87
4-3-1-1 RSM實驗設計法其(1,1)試程之連續醱酵產氫行為………….…...87
4-3-1-2電子顯微鏡SEM圖之菌相..………………..…………………...….88
4-3-2 RSM實驗設計法其(1,-1)試程……………………………….……..…...91
4-3-2-1 RSM實驗設計法其(1,-1)試程之連續醱酵產氫行為……………...91
4-3-2-2電子顯微鏡SEM圖之菌相..………………..…………………..…..92
4-3-3 RSM實驗設計法其(-1,1)試程…………………………………………...95
4-3-3-1 RSM實驗設計法其(-1,1)試程之連續醱酵產氫行為……………...95
4-3-3-2電子顯微鏡SEM圖之菌相.…………………………………….…...96
4-3-4 RSM實驗設計法其(-1,-1)試程……………………………….……........99
4-3-4-1 RSM實驗設計法其(-1,-1)試程之連續醱酵產氫行為……………..99
4-3-4-2電子顯微鏡SEM圖之菌相.…………………………….……….....100
4-3-5 RSM實驗設計法其(0,1.5)試程……………………………….……......103
4-3-5-1 RSM實驗設計法其(0,1.5)試程之連續醱酵產氫行為…………....103
4-3-5-2電子顯微鏡SEM圖之菌相.…………………………….……….....104
4-3-6 RSM實驗設計法其(0,-1.5)試程……………………………….…........107
4-3-6-1 RSM實驗設計法其(0,-1.5)試程之連續醱酵產氫行為…………..107
4-3-6-2電子顯微鏡SEM圖之菌相.…………………………….……….....108
4-3-7 RSM實驗設計法其(-1.5,0)試程……………………………….…….....111
4-3-7-1 RSM實驗設計法其(-1.5,0)試程之連續醱酵產氫行為…………..111
4-3-7-2電子顯微鏡SEM圖之菌相.…………………………….……….....112
4-3-8 RSM實驗設計法其(1.5,0)試程…………………………...……..…......115
4-3-8-1 RSM實驗設計法其(1.5,0)試程之連續醱酵產氫行為…………....115
4-3-8-2電子顯微鏡SEM圖之菌相.…………………………….……….....116
4-3-9 RSM實驗設計法其(0,0) a試程…………………………….….……....119
4-3-9-1 RSM實驗設計法其(0,0) a試程之連續醱酵產氫行為……….…..119
4-3-9-2電子顯微鏡SEM圖之菌相.………………………………..……....120
4-3-10 RSM實驗設計法其(0,0) b試程…………………………….…….....123
4-3-10-1 RSM實驗設計法其(0,0) b試程之連續醱酵產氫行為…….…...123
4-3-10-2電子顯微鏡SEM圖之菌相.………………………………..….….124
4-3-11 各個試程糖利用率及溶解態液相代謝產物之比較……………….....127
4-3-12 以RSM實驗設計法之回歸後最佳值.……………………………….132
4-3-12-1 以RSM實驗設計法回歸HRT=4 h之最佳條件值…………..….132
4-3-12-2 以RSM實驗設計法回歸HRT=2 h之最佳條件值…………..….133
4-3-12-3 以RSM實驗設計法回歸HRT=1 h之最佳條件值……………...134
第五章 結論…..……………………………………………...….……………....……136
參 考 文 獻……………………………………….…………………………...………138
致謝與作者簡介………………………………….…………….……………...……… 146
Adams MWW, The metabolism of hydrogen by extremely thermophilic sulphur-dependent bacteria. FEMS Microbiol Rev 75:219-238 (1990)
Burns LD, McCormick JB and Borroni-Bird CE, Vehicle of change, Scientific American, New York, 287:4, 41-49 (2002)
Benemann JR, Berenson JA, Kaplan NO, Kauren MD, Hydrogen evolution by a chloroplast-fereedoxin-hydrogenase system, Proc. Natl. Acad. Sci. USA. 70: 2317-20 (1973)
Benemann JR, Miyamoto K, Hallenbeck PC, Bioengineering aspects of biophotolysis. Enzyme Microbial, Technol. 2: 103-11; (1980)
Benemann, JR., Feasibility analysis of photobiological hydrogen production, Int J Hydrogen Energy 22: 979-987 (1997)
Brosseau JD, Zajic JE. Continuous microbial production of hydrogen gas. Int J Hydrogen Energy 7: 623-8 (1982).
Calvin M, Taylor SE, Fuels from algae. In: Cresswell RC, Rees TAV, Shah N, editors. Algal and cyanobacterial biotechnology. London: Longman Scientific and Technical: 137-160 (1989)
Chen WM, Tseng ZJ, Lee KS, Chang JS, Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrog Energy 30:1063-1070 (2005)
Chin HL, Chen ZS, Chou CP, Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production, Biotechnol Prog, 19, 383-388 (2003)
Das D, Veziroglu, TN, Hydrogen production by biological processes: a survey of literature, Int J Hydrog Energy 26:13-28 (2001)
Endo G, Noike T, and Matsumoto J, Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic disgestion, Proc. Soc. Civ. Engrs, No. 325:61-68, Japanese (1982)

Fang HHP, Liu H., Effect of pH on hydrogen production from glucose by a mixed culture, Bioresour. Technol., 82: 87-93 (2002)
Frieda O, Nava N, Characteristics of organics removal by pact simultaneous adsorption and biodegradation, Wat. Res., 31:391-398 (1997)
Gaffron H, Rubin J, Fermentative and photochemical production of hydrogen by algae. J. Gen. Physiol. 26: 219-40 (1992)
Hawkes FR., Dinsdalea R, Hawkesb DL, Hussyb I, Sustainable fermentative hydrogen production: challenges for process optimization, Int. J. Hydrog. Energy, 27: 1339–1347 (2002)
Healey FP, Hydrogen evolution by several algae, Planta 91: 220 (1970)
Kataoka N, Miya A, Kiriyama K, Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria, Wat. Sci. Tech., 36: 41-47 (1997)
Kumazawa S, Mitsui A. Characterization and optimization of hydrogen photoproduction by saltwater blue-green algae, Oscillatoria Sp. Miami BG7: Enhancement through limiting the supply of nitrogen nutrient. Int. J. Hydrogen Energy 6: 339-48 (1981)
Kumar D, Kumar HD. Effect of monochromatic lights on nitrogen fixation and hydrogen evolution in the isolated hetrocysts of Anabaena sp. strain CA. Int. J. Hydrogen Energy. 16: 397-401 (1991).
Kumar N, Das D, Enhancement of hydrogen production by Enterobacter cloacae ⅡT-BT 08. Process Biochem 35: 589-94 (1999).

Kumar N, Das D, Production and purification of alpha-amylase from hydrogen producing Enterobacter cloacae ⅡT-BT 08. Bioprocess Eng. 23: 205-8 (2000a)

Kumar N, Das D, Production of pollution free gaseous fuel. Patent application Cal:473. India (2000b)
Lambert GR, Smith GD, The hydrogen metabolism of cyanobacteria (blue-green algae). Biol Rev. 56: 589-660 (1981).
Lay JJ, Lee YJ, Noike T, Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Wat. Res. Ⅱ, 2579-2586(1999)
Lee JW, Greenbaum E, A new perspective on hydrogen production of photosynthetic water splitting. In: Saha BC, Woodward J, editors. Fuels and chemical for biomass, ACS Symposium Series, Washington: ACS. Vol. 666:209-22 (1997)
Lee MJ, Zinder SH, Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic co-culture. Appl Environ Microbiol 54:1457-1461 (1988)
Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS, H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnol Lett 25:133-138 (2003)
Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ, Chang JS, Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng 87(5):648-657 (2004)
Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS, Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme Microb Technol (2004)
Levin DB, Pitt L, Love M. Biohydrogen production: prospects and limitations to practical application. Inter J Hydrog Energy 29:173-185 (2004)
Lin CY, Chang RC, Hydrogen production during the anaerobic acidogenic conversion of glucose, J Chem Technol Biotechnol 74:498-500 (1999)
Miyake J, Biohydrogen. Zaborsky et al. (eds), Plenum Press, New York (1998)
Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T, Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresour Technol 73:59-65 (2000)
Newsweek, April 8-15 (2002)
Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N, Enhanced Hydrogen Production in Altered Mixed Acid Fermentation of Glucose by Enterobacter aerogenes, J Fermen. Bioeng 83:358-363 (1997)
Ramachandran R, Menon RK, An overview of industrial uses of hydrogen, Int J Hydrog. Energy 23:593-598 (1998)
Rosen MA; Scott DS, Comparative efficiency assessments for a range of hydrogen production processes, Int J Hydrog Energy 23:653-659 (1998)
Sarker S, Pandey KD, Kashyap AK, Hydrogen photoproduction by filamentous non-heterocystous cyanobacterium Pleatonema boryanna and simultaneous release of ammonia. Int J Hydrogen Energy 17: 689-94 (1992)
Smith GD, Ewart GD, Tucker W, Hydrogen production by cyanobacteria. Int J Hydrogen Energy 17: 695-8 (1992)
Stewar WDP, Some aspects of structure and function in N2-fixing cyanobacteria. Annu Rev Microbiol 34: 497-536 (1980)
Subramanian G, Kaushik BD, Venkatraman GS, Cyanobacterial biotechnology. USA: Science Pub. Inc (1998)
Tanisho S, Wakao N, Kokako Y, Biological hydrogen production by Enterobacter aerogenes. J. Chem. Eng. Jpn. 16: 529-30 (1983)
Tanisho S, Suzuki Y, Wakoo N, Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005. Int J Hydrogen Energy 12: 623-7 (1987)
Tanisho S. Biological hydrogen production by fermentation. Proceedings of the Second International Conference on New Energy Systems & Conv., Istanbul. 311-6 (1995)
Thomas D, Michael T, John M, Jack P, Biology of Microorganisms, Seventh edition, 77-80 (1994)
Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M, Biological production of hydrogen from cellulose by natural anaerobic microflora, J. Fermen Bioeng, 79: 395-397 (1995)
van Lier JB, Rebac S, Lettinga G., High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions, Water Sci. Technol., 35: 199-206 (1997)
van Niel EWJ, Budde MAW, de Haas GG., van der Wal FJ, Claassen PAM, Stams AJM., Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii, Int J Hydrog Energy 27: 1391-1398 (2002)
Vavilin VA., Rytow SV, Lokshina LY, Modelling hydrogen partial pressure change as a result of competition between the butyricand propionicgroups of acidogenicbac teria. Bioresour Technol 54:171–177 (1995)
Veziroglu TN, Twenty years of the hydrogen movement 1974-1994, Int J. Hydrog Energy 20:1-7 (1995)
Weare NM, Benemann JR. Nitrogenase activity and photosynthesis by Plectonema boryanum 594. J. Bacteriol. 119: 158-68 (1874)
Yokoi H, Aratake T, Hirose J, Hayashi S, Takasaki Y, Simultaneous production of hydrogen and bioflocculant by Enterobacter sp. BY-29, World J Microbiol Biotechnol 17: 609-13 (2001)
Yokoi H, Ohkawara T, Hirose J, Hayashi S, Takasaki Y, Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J. Fermen Bioeng 80: 571-574 (1995)
Yu HQ, Fang HHP, Gu GW, Comparative performance of mesophilic and thermophilic acidogenic upflow reactors, Process Biochem., 38: 447-454 (2002a)
Yu HQ, Zhu ZH, Hu WR, Zhang HH, Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures, Int J Hydrog Energy 27:1359-1365 (2002b)
Zaborsky OR(ed.) Biohydrogn. Plenum Press, New York (1997)
Zhang T, Liu H, Fang HHP, Biohydrogen production from starch in wastewater under thermophilic condition, J. Environ. Manage 69:149-156 (2003)
王貴譽、張瑞烽,微生物學第五版,第24-29頁(1993)
吳石乙、林祺能、張建盛、陳人豪、邱茗煥、張嘉修,流化床中乙烯醋酸乙醯酯固定化產氫菌之醱酵產氫研究,第28屆廢水處理技術研討會論文集(2003)
吳龍暉,用之不竭的乾淨氫氣能源,太陽能學刊,第4卷,第1期,第14-16頁(1999)
李國興,以顆粒污泥程序進行高速厭氧醱酵產氫,逢甲大學化學工程系研究所博士論文(2003)
李國興、林屏杰、張嘉修,以生物膜反應器進行連續氫氣醱酵,第7屆生化工程研討會論文集(2002a)
李國興、范姜楷、劉宏秀、林屏杰、張嘉修,馴化生活廢水污泥之厭氣產氫反應器與氫氣純化回收裝置之設計,Proceedings of the 6th Conference on Biochemical Engineering,pp. 621-624,Chung-Li, Taiwan, R.O.C. (2001)
李國興、張益盛、羅泳中、吳季芳、林屏杰、張嘉修,碳/氮比對厭氧污泥連續醱酵產氫之影響,Proceedings of the 9th Conference on Biochemical Engineering (in CD-ROM collection) (2004)
李國興、陳惠莉、吳季芳、羅泳中、羅泳勝、張益盛、林屏杰、張嘉修,溫度對顆粒污泥程序醱酵產氫之影響,第28屆廢水處理技術研討會論文集 (2003)
李國興、謝家琦、劉宏秀、汪玉婷、林祺能、林屏杰、林秋裕、張嘉修,以顆粒化產氫污泥固定床進行連續式厭氧產氫操作,第26屆廢水處理技術研討會,第1-86頁 (2001)
李國興、羅泳中、羅泳勝、吳季芳、林屏杰、張嘉修,以生物填充床反應器進行連續氫氣醱酵,第27屆廢水研討會論文集 (2002b)
李國興、羅泳中、羅泳勝、林屏杰、張嘉修,顆粒污泥程序醱酵產氫長期穩定操作之策略探討,Proceedings of the 8th Conference on Biochemical Engineering, Kaohsiung, Taiwan, R.O.C. (in CD-ROM Collection) (2003)
李國興、蔡孟倫、林屏杰、張嘉修,May,溫度對厭氧污泥醱酵產氫之影響,第九屆海峽兩岸環境保護學術研討會,pp. 1899-1903, 中國大陸,西安 (2004)
李國興、蔡孟倫、林屏杰、張嘉修,以中高溫CSTR 程序進行厭氧醱酵產氫,Proceedings of the 8th Conference on Biochemical Engineering, Kaohsiung, Taiwan, R.O.C. (in CD-ROM Collection) (2003)
李國鏞、游若荻,微生物學,華香原出版社,第四版,第126-145頁 (1992)
沈萍,微生物學,初版,五南出版機構出版,95~100;178~183(2003)
林明正,CSTR厭氧產氫反應槽之啟動及操作,逢甲大學土木與水利工程碩士論文(2000)
林凱隆,重金屬對厭氧消化法酸生成相之影響,逢甲大學土木與水利工程碩士論文(1991)
林祺能,固定化細胞產氫,逢甲大學化學工程系碩士論文 (2002)
邵信,厭氣處理研發新方向—產氫技術,1997廢水處理技術研討會第二章,工研院(1997)
洪哲穎、陳國誠,回應曲面實驗設計法在微生物酵素生產之應用,化工期刊,第39卷,第二期,第3~18頁 (1992)
洪國展,光合產氫之程序組合及應用,中興大學環境工程學系碩士論文 (2003)
范姜楷,以CSTR合併中空纖維微過濾膜組進行厭氣污泥連續式產氫醱酵,逢甲大學化學工程系碩士論文 (2002)
范姜楷、林屏杰、張嘉修,以中空纖維膜生物反應器進行高效能厭氣產氫,第七屆生化工程研討會論文集,第543-549頁 (2002)
張建盛,以EVA擔體固定化菌體污泥醱酵產氫,逢甲大學化學工程系碩士論文(2003)
張嘉修、李國興、林屏杰、吳石乙、林秋裕,以環境生物技術生產清潔能源-氫氣,中國化學工程學會,第49卷第6期,第85-104頁 (2002)
陳國誠,廢水生物處理學,國立編譯館出版,第8-10頁 (1991)
陳頤之、劉薏蓉、黃文忠、蔡明明、林美惠、劉倩君合著,微生物學,初版,華騰出版,3-10~3-13 (2002)
曾重仁,氫能源技術簡介,太陽能學刊,第3卷,第2期,第9-11頁 (1998)
楊世民、林讚峰,簡介利用回應曲面實驗設計法決定工業微生物的最佳培養基,製酒科技專論彙編,第16期,第139~150頁 (1994)
詹哲豪、林绣茹、顏瑞鴻、池華瑋,簡明微生物學,第五版,華杏出版機構出版,第41-72頁 (2000)
蔡水源,以生物技術生產氫氣—在CO2的分離、回收、在利用中研究出更潔淨的氫氣製造方法,電機月刊,第五卷,第十一期,第199-202頁 (1995)
55蔡孟倫,CSTR系統醱酵產氫之研究:溫度效應與效能提升策略之探討,逢甲大學化學工程系碩士論文 (2003)
鄧小晨、胡承,微生物學,第二版,新文京出版,166~168 (2003)
賴俊吉,厭氧生物產氫技術發展近況,環境工程會刊,第24-29頁 (2000)
謝哲松,微生物生物學下冊,國立編譯館出版,第1245-1252頁 (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top