參考文獻
【1】王佩如,自由下落之圓柱與流體互制之數值模式,逢甲大學水利工程學系碩士班碩士論文,187頁,民國93年6月。
【2】周士傑,圓柱下游之卡門渦街流場數值模擬,逢甲大學水利工程學系碩士班碩士論文,151頁,民國92年6月。【3】Badr, H. M. and S. C. R. Dennis, 1985, Time-Dependent Viscous Flow Past an Impulsively Started Rotating and Translating Circular Cylinder, J. Fluid Mech., Vol. 158, pp. 447~488.
【4】Blevins, R.D. and T. E. Burton, 1975, Fluid Forces Induced by Vortex Shedding, ASME Paper 75-FE-10.
【5】Braza, M., P. Chassing, and H. Haminh, 1986, Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder, J. Fluid Mech., Vol. 165, pp. 79~130.
【6】Cheng, C. H., J. L Hong, and Win Aung, 1997, Numerical Prediction of Lock-on Effect on Convective Heat Transfer From a Transversely Oscillating Circular Cylinder, Int. J. Heat Mass Transfer, Vol. 40, No. 8. pp. 1825~1834.
【7】Coutanceau and M.R. Bouard, 1977, Experimental Determination of the Main Feature of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation. Part1. Steady Flow, J. Fluid Mech., Vol. 79, pp. 231~256.
【8】Coutanceau and M.R. Bouard, 1977, Experimental Determination of the Main Feature of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation. Part2. Unsteady Flow, J. Fluid Mech., Vol. 79, pp. 257~272.
【9】Evangelinos, C., D. Lucor, and G. E. Karniadakis, 2000, DNS-Derived Force Distribution on Flexible Cylinders Subject to Vortex-Induced Vibration. J. Fluids and Structures, Vol. 14, pp. 429~440.
【10】Evangelinos, C. and G. E. Karniadakis, 1999, Dynamics and Flow Structures in the Turbulent Wake of Rigid and Flexible Cylinders Subject to Vortex-Induced Vibrations. J. Fluid Mech., Vol. 400, pp. 91~124.
【11】Filler, J. R., P. L. Marston, and W. C. Mih, 1991, Response of the Shear Layers Separating from a Circular Cylinder to Small-Amplitude Rotational Oscillations, J. J. Fluid Mech., Vol. 231, pp. 481~499.
【12】Govardhan, R. and C. H. K. Williamson, 2000, Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder. J. fluid Mech., Vol. 420, pp. 85~130.
【13】Harlow, F. H. and J. E. Welch, 1965, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, Phys. Fluids, Vol. 8, pp. 2182~2189.
【14】Hurlbut, S. E., M. L. Spaulding and F. M. White, 1982, Numerical Solution for Laminar two Dimension Flow about a Cylinder Oscillating in a Uniform Stream, J. Fluids Engineering, Vol. 104, pp. 214~222.
【15】Hwang, Robert R., T. P. Chiang and M. T. Chiao, 1986, Time-Dependent Incompressible Viscous Flow Past a Circular Cylinder, J. the Chinese institute of Engineers. Vol. 9, No. 6, pp. 617~631.
【16】Jain P. C., and K. S. Rao, 1969, Numerical Solution of Unsteady Viscous Incompressible Circular Cylinder, Phys. Fluids Suppl,(II)12, 57.
【17】Jauvtis, N. and C.H.K. Williamson, 2003, Vortex-Induced Vibration of a Cylinder with two Degrees of Freedom, J. Fluids and Structures, Vol. 17, pp. 1035~1042.
【18】Jordan, S. K. and J. E. Fromm, 1973, Oscillatory Drag, Lift, and Torque on a Circular Cylinder in a Uniform Flow, The Physics Of Fluids, 1972, Vol. 15, No. 3, pp. 371~377.
【19】Justesen, Peter, 1991, A Numerical Study of Oscillating Flow around a Circular Cylinder, J. Fluid Mech., Vol. 222, pp. 157~196.
【20】Karman, T. von, 1911, Phys. Z. xiii, 49.
【21】King, R., 1977, A Review of Vortex Shedding Research and its Application, Ocean Engng., Vol.4, pp. 141~171.
【22】King, R., 1974, Hydroelastic Model Tests of Marine Piles-a Comparison of Model and Full-Scale Results. BHRA Report RR 1254.
【23】Kovasznay, L. S. G., 1949, Hot-Wire Investagation of the Wake behind Cylinder at Low Reynolds Number, Proc. R. Soc. Lond., A 198, 174.
【24】Lecointe, Y. and J. Piquet, 1989, Flow Structure in the Wake of an Oscillating Cylinder, J. Fluids Engineering, Vol. 111, pp. 139~148.
【25】Lecointe, Y. and J. Piquet, 1984, On the Use of Several Compact Methods for the Study of Unsteady Incompressible Viscous Flow around Circular Cylinders, Comp. and Fluids, Vol. 12, No. 4, pp. 255~280.
【26】Lecointe, Y. and J. Piquet, 1985, Compact Finite-Difference Methods for Solving Incompressible Navier-Stokes Equations around Oscillating Bodies, Computational Fluid Dynamics: 210 pages.
【27】Lin, C., D. Peter and S. Lee, 1976, Numerical Method for Separated Flow Solutions Around a Circular Cylinder, AIAA J., Vol. 14, pp. 900~907.
【28】Lu, X.Y. and J. Sato, 1996, A Numerical Study of Flow Past a Rotationally Oscillating Circular Cylinder, J. Fluids and Structures, Vol. 10, pp. 829~849.
【29】Mendes, P. A. and F. A. Branco, 1999, Analysis of Fluid-Structure Interaction by an Arbitrary Lagrangian-Eulerian Finite Element Formulation. International Journal for Numerical Methods in Fluids 30, pp. 897~919.
【30】Mahfouz, F. M. and H. M. Badr, 2000, Flow Structure in the Wake of a Rotation Oscillating Cylinder, J. Fluids Engineering, Vol. 122, pp. 290~301.
【31】Mittal, S. and V. Kumar, 1999, Finite Element Study of Vortex-Induced Cross-Flow and in-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers. International Journal for Numerical Methods in Fluids 31, pp. 1087~1120.
【32】Newman, D. J. and G. Karniadakis, 1997, A Direct Numerical Simulation Study of Flow Past a Freely Vibrating Cable. J. Fluid Mech., Vol. 344, pp. 95~136.
【33】Oseen, C. W., 1910, Über die Stokessche Formel und über die verwandte Aufgabe in der Hydrodynamik, Arkiv Mat., Astron., Fysik, 6(29).
【34】Panton, R. L., 1996, Imcompressible Flow, pp. 388~389.
【35】Proudman, I. and J. R. A. Pearson, 1957, Expansions at Small Reynolds Number for the Flow Past a Sphere and a Circular Cylinder, J. Fluid Mech., Vol. 2, pp. 237~262.
【36】Roshko, A., 1954, On the Development of Turbulent Wakes from Vortex Streets, NACA Rep. No. 1191.
【37】Schaefer, John W. and S. Eskinazi, 1958, An Analysis of the Vortex Street Generated in a Viscous Fluid, J. Fluid Mech., Vol. 6, pp. 241~260.
【38】Scrution, C. 1963, On the Wind-Excited Oscillations of Stacks Towers and Masts, Proc. Conf. on Wind Effects on Buildings and Structures. Teddington.
【39】So, R. M. C., Y. Zhou and M. H. Liu, 2000, Free Vibrations of an Elastic Cylinder in a Cross Flow and their Effects on the near Wake, Experiment in Fluids, Vol. 29, pp. 130~144.
【40】So, R. M. C., Y. Liu and K. Lam, 2001, Numerical Studies of a Freely Vibrating Cylinder in a Cross-Flow, J. Fluids and Structures, Vol. 15, pp. 845~866.
【41】Son, J. S. and T. J. Hanratty, 1969, Numerical Solution for the Flow around a Cylinder at Reynolds Number of 40, 200 and 500, J. Fluid Mech., Vol. 35, pp. 369.
【42】Taneda, S., 1978, Visual Observation of the Flow Past a Circular Cylinder Performing a Rotary Oscillation, J. Physics Society of Japan, Vol. 45, pp. 1038~1043.
【43】Tanida, Y., 1973, Stability of a Circular Cylinder Oscillating in Uniform Flow or in a Wake, J. Fluids Mech., Vol. 61, pp. 769~784.
【44】Thoman, D. C. and A. A.Szewczyk, 1969, Time Dependent Viscous Flow Over a Circular Cylinder, Phys. Fluids Suppl., Vol. II, pp. 79~86.
【45】Tokumaru, P. T. and P. E. Dimotakis, 1991, Rotary Oscillation Control of a Cylinder Wake, J. Fluid Mech., Vol. 224, pp. 77~90.
【46】Tokumaru, P. T. and P. E. Dimotakis, 1993, The Lift of a Cylinder Executing Rotary Motions in a Uniform Flow, J. Fluid Mech., Vol. 255, pp. 1~10.
【47】Tritton, D. J., 1971, A Note On Vortex Street Behind Circular Cylinders at Low Reynolds Numbers, J. Fluid Mech., Vol. 45, pp. 203~208.
【48】Versteeg, H. K., and W. Malalasekera (1999) An Introduction To Computational Fluid Dynamics, The Finite Volum Method, Longman, pp. 125-130.
【49】Vickery, B. J. and R. D. Watkins, 1962, Flow-Induced Vibrations of Cylindrical Structures, Proc. 1st Australasian Conf. pp. 213~241.
【50】Wang, X. and C. Dalton, 1991, Oscillating Flow Past a Rigid Circular Cylinder: A Finite Difference Calculation, J. Fluids Engineering, Vol. 113, pp. 377~383.
【51】Willamson, C. H. K., 1985, Sinusoidal Flow Relative to Circular Cylinders, J. Fluid Mech., Vol. 155, pp. 141~174.
【52】Wu, J. M., J. D. Mo, and A. D. Vakili, 1989, On the Wake of a Circular Cylinder with Rotational Oscillations, AIAA-89-1024.
【53】Zhang, J. and C. Dalton, 1993, A Numerical Comparison of Morison Equation Coeifficient for Low Keulegan-Carppenter Number Flows: Both Sinusodal and Nonsinusodal, J. Fluids and Structures, Vol. 7, pp. 39~56.
【54】ZHOU, C. Y., R. M. C. SO, and K. LAM, 1999, Vortex-Induced Vibrations of Elastic Circular Cylinders. J. Fluids and Structures, Vol.13, pp.165~189.