跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧杰志
研究生(外文):Chieh-Chih Lu
論文名稱:流場與彈性圓柱互制系統之數值模擬
論文名稱(外文):Simulation of the Interaction system for a Flow Past an Elastic Circular Cylinder
指導教授:鄭仙偉
指導教授(外文):Shain-Woei Jeng
學位類別:碩士
校院名稱:逢甲大學
系所名稱:水利工程所
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:96
中文關鍵詞:阻尼圓柱流場互制振動彈性
外文關鍵詞:CylinderNatural frequencyVibrationInteractionFlowElastic
相關次數:
  • 被引用被引用:3
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
流體在通過柱狀結構物時,在結構物下游表面常產生交替射出之渦流,使作用於結構物之升力與阻力作週期性之變化,從而引起結構物之橫向振動與流向振動。而結構物之振動同樣也會影響交替射出渦流之強度與頻率,改變升力與阻力之變化。此種相互影響之作用稱為互制。當渦流之射出頻率與結構物自然振動頻率相近時,二者產生共振,而結構物之安全則受到威脅,甚至遭到破壞。史上遭到此種渦流引發振動破壞的吊橋不下50座,而核電廠輪機輪葉受到此種效應破壞的案例也非罕見。流場與彈性柱互制系統之研究始於1960年代,係以實驗與簡化之理論方法進行。由於電腦容量及運算速度之限制,直至1990年代後期才發展出以數值進行研究之方法。這是一個新的力學計算領域,也具有重要的工程應用價值。
  本研究以數值方法模擬流場與彈性圓柱互制之系統。流場部份係在以圓心為原點之非慣性座標直接求解流速與壓力。彈性圓柱振動部分則在慣性座標求解圓柱之位移、速度與加速度。每一時階,先解流場,並計算作用於圓柱之力;再由此力計算圓柱之振動。而圓柱之振動又將影響下一時階流場之制御方程式及邊界條件,從而達到互制之目的。數值模式將前人已有之「自由下落圓柱與流場之相互運動」模式加以修正來建立。
  本研究將系統化地研究四個無因次參數對流場特性及圓柱振動特性之影響。四個參數即圓柱振動之自然頻率、雷諾數、質量比及阻尼比。流場特性包括渦流射出頻率,阻力,升力,圓柱表面壓應力、剪應力、渦度分布,停滯點及分離點位置,流場等壓力線、等渦度線及流線等。圓柱振動特性包括圓柱之位移、速度及加速度,振動頻率,共振區間,最大振幅,及各種作用力與位移間之相位差等。上述各項特性對時間之演化也將是重要的研究課題。對此種振動分析而言,波譜分析方法將是個必要的分析工具。在研究中,尚可利用數值模擬廣搜尋之能力,找出控制此非線性系統之槓桿點,以小而有效的改變消減共振效應。
Due to the vortex alternatively shedding form the downstream surface of the structure for a flow past an elastic cylindrical structure, the drag and lift forces on the structure show a periodic variation with time. The structure is then vibrated periodically both in in-line and transverse directions. Respectively, the shedding intensity and frequency of the vortex are also affected by the vibration of the structure. This is the so-called flow-structure interaction. Synchronization occurs when the natural frequency of the structure is close to the vortex shedding frequency. It can cause structure fatigue, and may lead to drastic failure of the structure. The lab experimental and simplified theoretical studies of the flow-structure interaction system started after 1960. The numerical study of this system has not been developed until the late of 1990’s. This new frontier of computational mechanics has its importance in the field of engineering application.
A numerical model will be set up to simulate the interaction of a flow and an elastic circular cylinder. A 2-D non-inertial coordinate, which is fixed at the center of the cylinder, will be implemented to solve directly for the velocities and the pressure of the flow field, and an inertial coordinate will be adopted to solve for the motion of the cylinder. The interaction is reached as follows. At each time step, the flow field is solved first, and then the motion of the cylinder is calculated using the force produced by the flow field computation. At the next time step, the motion of the cylinder changes the conditions of the flow. An existing successful numerical code ”the interaction of a flow and a freely falling circular cylinder” will be modified to meet the need of this project.
The characteristics of the flow field and the cylinder vibration will be studied systematically according to four non-dimensional parameters, i.e. the natural frequency of the cylinder, the Reynolds number, the mass ratio, and the damping ratio. The characteristics of the flow field include vortex shedding frequency, drag and lift forces, the pressure, shear force, and vorticity distributions on the cylinder, stagnation and separation points, the pressure, stream-function, and vorticity contours, and so on, while those of the cylinder vibration consist of the displacement, velocity and acceleration of the cylinder, vibrating frequency, zone of vibration, maximum amplitude, phase angle, and so forth. The evolution of the characteristics mentioned will be discussed also. It has not been forgotten that energy spectrum analysis plays an important role for the study of such system. Due to the broadly searching ability of numerical model, it is also possible to find the leverage point so that a simple and effective way may be set up to diminish the amplitude of the synchronization.
目錄
目次 頁次

中文摘要 ………………...………….…………………… I

英 文 摘要 ………………...………….…………………… III

目 錄 …………………...……….…………………… V
表 目 錄 …………………...……….…………………… VIII
圖 目 錄 …………………...……….…………………… IX
符號說明表 …………………...……….…………………… XI

第一章 概論………………………………………………. 1
1.1 概述……………………………………………….……… 1
1.2 前人研究……………………………………….………… 2
1.2.1 圓柱為固定之狀況………………………………... 2
1.2.2 圓柱為強制運動之狀況…………………………... 4
1.2.3 圓柱與流場互制之狀況:物理實驗部分………… 5
1.2.4 圓柱與流場互制之狀況:數值部分……………… 6
1.3 研究目的……………….………………………………… 7
1.4 章節介紹…………………………………………………. 8

第二章 理論分析…………………………………………. 10
2.1 流場部份......…………………………………………....... 10
2.1.1 控制方程式……………………………………….. 10
2.1.2 起始條件………………………………………….. 12
2.1.3 邊界條件………………………………………….. 13
2.1.3.1 內邊界條件………………………………. 13
2.1.3.2 外邊界條件………………………………. 13
2.1.4 作用力…………………………………………….. 14
2.2 圓柱振動部分……………….………………………….... 15
2.3 互制部分…………………………………………………. 19

第三章 數值方法…………………………………………. 20
3.1 求解流場…...……………………………………..…….... 20
3.1.1 流場計算…………………………………………. 20
3.1.2 起始條件…………………………………………. 22
3.1.3 邊界條件…………………………………………. 23
3.1.3.1 內邊界條件………………………………. 23
3.1.3.2 外邊界條件………………………………. 23
3.1.4 座標轉換…….…………………………………… 24
3.1.5 網格系統…….………………………………. 27
3.1.6 求解昇力與阻力係數………………………... 29
3.1.7 求解流線函數 ……………………………...
31
3.1.8 求解渦度 …………………………………..
32
3.1.9 時階 的限制………………………………..
33
3.2 彈性圓柱振動…………………………………..……....... 35
3.3 互制…………………………………………………..…... 35
3.4 波譜分析理論……………………………………………. 37
3.5 其他說明………………………………………………….. 39
3.5.1 二階段計算………………………………….. 39
3.5.2 慣性座標之流線…………………………………. 40

第四章 結果與討論………………………………………. 41
4.1 彈性圓柱運動與流場隨時間之變化……………………. 42
4.2 自然頻率之影響………………………………………….. 43
4.3 雷諾數的影響……………………………………… 49
4.3.1 對共振區間的影響………………………….. 49
4.3.2 對CLrms與CDavg的影響………………………… 50
4.3.3 對波譜能量(ES)的影響………………………. 51
4.3.4 CLrms、CDavg與共振區間之關係………..……….. 51
4.4 彈性圓柱之質量的影響……………………………... 52
4.4.1 對共振區間的影響………………………….. 52
4.4.2 對CLrms與CDavg的影響………………………… 53
4.4.3 對波譜能量(ES)的影響………………………. 54
4.4.4 CLrms、CDavg與共振區間之關係…………………. 55
4.5 阻尼比的影響…………………………………………….. 55
4.5.1 對共振區間的影響………………………….. 56
4.5.2 對CLrms與CDavg的影響………………………… 57
4.5.3 對波譜能量(ES)的影響………………………. 57
4.5.4 CLrms、CDavg與共振區間之關係……………..….. 58
第五章 結論與建議………………………………………. 59
5.1 結論…………………………………..…………………... 59
5.2 建議………………………………………………………. 65
參考文獻…………………………………………………….. 66

表……………………………………………………………... 71

圖……………………………………………………………... 76

謝誌…………………………………………………………... 96
參考文獻
【1】王佩如,自由下落之圓柱與流體互制之數值模式,逢甲大學水利工程學系碩士班碩士論文,187頁,民國93年6月。
【2】周士傑,圓柱下游之卡門渦街流場數值模擬,逢甲大學水利工程學系碩士班碩士論文,151頁,民國92年6月。
【3】Badr, H. M. and S. C. R. Dennis, 1985, Time-Dependent Viscous Flow Past an Impulsively Started Rotating and Translating Circular Cylinder, J. Fluid Mech., Vol. 158, pp. 447~488.
【4】Blevins, R.D. and T. E. Burton, 1975, Fluid Forces Induced by Vortex Shedding, ASME Paper 75-FE-10.
【5】Braza, M., P. Chassing, and H. Haminh, 1986, Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder, J. Fluid Mech., Vol. 165, pp. 79~130.
【6】Cheng, C. H., J. L Hong, and Win Aung, 1997, Numerical Prediction of Lock-on Effect on Convective Heat Transfer From a Transversely Oscillating Circular Cylinder, Int. J. Heat Mass Transfer, Vol. 40, No. 8. pp. 1825~1834.
【7】Coutanceau and M.R. Bouard, 1977, Experimental Determination of the Main Feature of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation. Part1. Steady Flow, J. Fluid Mech., Vol. 79, pp. 231~256.
【8】Coutanceau and M.R. Bouard, 1977, Experimental Determination of the Main Feature of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation. Part2. Unsteady Flow, J. Fluid Mech., Vol. 79, pp. 257~272.
【9】Evangelinos, C., D. Lucor, and G. E. Karniadakis, 2000, DNS-Derived Force Distribution on Flexible Cylinders Subject to Vortex-Induced Vibration. J. Fluids and Structures, Vol. 14, pp. 429~440.
【10】Evangelinos, C. and G. E. Karniadakis, 1999, Dynamics and Flow Structures in the Turbulent Wake of Rigid and Flexible Cylinders Subject to Vortex-Induced Vibrations. J. Fluid Mech., Vol. 400, pp. 91~124.
【11】Filler, J. R., P. L. Marston, and W. C. Mih, 1991, Response of the Shear Layers Separating from a Circular Cylinder to Small-Amplitude Rotational Oscillations, J. J. Fluid Mech., Vol. 231, pp. 481~499.
【12】Govardhan, R. and C. H. K. Williamson, 2000, Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder. J. fluid Mech., Vol. 420, pp. 85~130.
【13】Harlow, F. H. and J. E. Welch, 1965, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, Phys. Fluids, Vol. 8, pp. 2182~2189.
【14】Hurlbut, S. E., M. L. Spaulding and F. M. White, 1982, Numerical Solution for Laminar two Dimension Flow about a Cylinder Oscillating in a Uniform Stream, J. Fluids Engineering, Vol. 104, pp. 214~222.
【15】Hwang, Robert R., T. P. Chiang and M. T. Chiao, 1986, Time-Dependent Incompressible Viscous Flow Past a Circular Cylinder, J. the Chinese institute of Engineers. Vol. 9, No. 6, pp. 617~631.
【16】Jain P. C., and K. S. Rao, 1969, Numerical Solution of Unsteady Viscous Incompressible Circular Cylinder, Phys. Fluids Suppl,(II)12, 57.
【17】Jauvtis, N. and C.H.K. Williamson, 2003, Vortex-Induced Vibration of a Cylinder with two Degrees of Freedom, J. Fluids and Structures, Vol. 17, pp. 1035~1042.
【18】Jordan, S. K. and J. E. Fromm, 1973, Oscillatory Drag, Lift, and Torque on a Circular Cylinder in a Uniform Flow, The Physics Of Fluids, 1972, Vol. 15, No. 3, pp. 371~377.
【19】Justesen, Peter, 1991, A Numerical Study of Oscillating Flow around a Circular Cylinder, J. Fluid Mech., Vol. 222, pp. 157~196.
【20】Karman, T. von, 1911, Phys. Z. xiii, 49.
【21】King, R., 1977, A Review of Vortex Shedding Research and its Application, Ocean Engng., Vol.4, pp. 141~171.
【22】King, R., 1974, Hydroelastic Model Tests of Marine Piles-a Comparison of Model and Full-Scale Results. BHRA Report RR 1254.
【23】Kovasznay, L. S. G., 1949, Hot-Wire Investagation of the Wake behind Cylinder at Low Reynolds Number, Proc. R. Soc. Lond., A 198, 174.
【24】Lecointe, Y. and J. Piquet, 1989, Flow Structure in the Wake of an Oscillating Cylinder, J. Fluids Engineering, Vol. 111, pp. 139~148.
【25】Lecointe, Y. and J. Piquet, 1984, On the Use of Several Compact Methods for the Study of Unsteady Incompressible Viscous Flow around Circular Cylinders, Comp. and Fluids, Vol. 12, No. 4, pp. 255~280.
【26】Lecointe, Y. and J. Piquet, 1985, Compact Finite-Difference Methods for Solving Incompressible Navier-Stokes Equations around Oscillating Bodies, Computational Fluid Dynamics: 210 pages.
【27】Lin, C., D. Peter and S. Lee, 1976, Numerical Method for Separated Flow Solutions Around a Circular Cylinder, AIAA J., Vol. 14, pp. 900~907.
【28】Lu, X.Y. and J. Sato, 1996, A Numerical Study of Flow Past a Rotationally Oscillating Circular Cylinder, J. Fluids and Structures, Vol. 10, pp. 829~849.
【29】Mendes, P. A. and F. A. Branco, 1999, Analysis of Fluid-Structure Interaction by an Arbitrary Lagrangian-Eulerian Finite Element Formulation. International Journal for Numerical Methods in Fluids 30, pp. 897~919.
【30】Mahfouz, F. M. and H. M. Badr, 2000, Flow Structure in the Wake of a Rotation Oscillating Cylinder, J. Fluids Engineering, Vol. 122, pp. 290~301.
【31】Mittal, S. and V. Kumar, 1999, Finite Element Study of Vortex-Induced Cross-Flow and in-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers. International Journal for Numerical Methods in Fluids 31, pp. 1087~1120.
【32】Newman, D. J. and G. Karniadakis, 1997, A Direct Numerical Simulation Study of Flow Past a Freely Vibrating Cable. J. Fluid Mech., Vol. 344, pp. 95~136.
【33】Oseen, C. W., 1910, Über die Stokessche Formel und über die verwandte Aufgabe in der Hydrodynamik, Arkiv Mat., Astron., Fysik, 6(29).
【34】Panton, R. L., 1996, Imcompressible Flow, pp. 388~389.
【35】Proudman, I. and J. R. A. Pearson, 1957, Expansions at Small Reynolds Number for the Flow Past a Sphere and a Circular Cylinder, J. Fluid Mech., Vol. 2, pp. 237~262.
【36】Roshko, A., 1954, On the Development of Turbulent Wakes from Vortex Streets, NACA Rep. No. 1191.
【37】Schaefer, John W. and S. Eskinazi, 1958, An Analysis of the Vortex Street Generated in a Viscous Fluid, J. Fluid Mech., Vol. 6, pp. 241~260.
【38】Scrution, C. 1963, On the Wind-Excited Oscillations of Stacks Towers and Masts, Proc. Conf. on Wind Effects on Buildings and Structures. Teddington.
【39】So, R. M. C., Y. Zhou and M. H. Liu, 2000, Free Vibrations of an Elastic Cylinder in a Cross Flow and their Effects on the near Wake, Experiment in Fluids, Vol. 29, pp. 130~144.
【40】So, R. M. C., Y. Liu and K. Lam, 2001, Numerical Studies of a Freely Vibrating Cylinder in a Cross-Flow, J. Fluids and Structures, Vol. 15, pp. 845~866.
【41】Son, J. S. and T. J. Hanratty, 1969, Numerical Solution for the Flow around a Cylinder at Reynolds Number of 40, 200 and 500, J. Fluid Mech., Vol. 35, pp. 369.
【42】Taneda, S., 1978, Visual Observation of the Flow Past a Circular Cylinder Performing a Rotary Oscillation, J. Physics Society of Japan, Vol. 45, pp. 1038~1043.
【43】Tanida, Y., 1973, Stability of a Circular Cylinder Oscillating in Uniform Flow or in a Wake, J. Fluids Mech., Vol. 61, pp. 769~784.
【44】Thoman, D. C. and A. A.Szewczyk, 1969, Time Dependent Viscous Flow Over a Circular Cylinder, Phys. Fluids Suppl., Vol. II, pp. 79~86.
【45】Tokumaru, P. T. and P. E. Dimotakis, 1991, Rotary Oscillation Control of a Cylinder Wake, J. Fluid Mech., Vol. 224, pp. 77~90.
【46】Tokumaru, P. T. and P. E. Dimotakis, 1993, The Lift of a Cylinder Executing Rotary Motions in a Uniform Flow, J. Fluid Mech., Vol. 255, pp. 1~10.
【47】Tritton, D. J., 1971, A Note On Vortex Street Behind Circular Cylinders at Low Reynolds Numbers, J. Fluid Mech., Vol. 45, pp. 203~208.
【48】Versteeg, H. K., and W. Malalasekera (1999) An Introduction To Computational Fluid Dynamics, The Finite Volum Method, Longman, pp. 125-130.
【49】Vickery, B. J. and R. D. Watkins, 1962, Flow-Induced Vibrations of Cylindrical Structures, Proc. 1st Australasian Conf. pp. 213~241.
【50】Wang, X. and C. Dalton, 1991, Oscillating Flow Past a Rigid Circular Cylinder: A Finite Difference Calculation, J. Fluids Engineering, Vol. 113, pp. 377~383.
【51】Willamson, C. H. K., 1985, Sinusoidal Flow Relative to Circular Cylinders, J. Fluid Mech., Vol. 155, pp. 141~174.
【52】Wu, J. M., J. D. Mo, and A. D. Vakili, 1989, On the Wake of a Circular Cylinder with Rotational Oscillations, AIAA-89-1024.
【53】Zhang, J. and C. Dalton, 1993, A Numerical Comparison of Morison Equation Coeifficient for Low Keulegan-Carppenter Number Flows: Both Sinusodal and Nonsinusodal, J. Fluids and Structures, Vol. 7, pp. 39~56.
【54】ZHOU, C. Y., R. M. C. SO, and K. LAM, 1999, Vortex-Induced Vibrations of Elastic Circular Cylinders. J. Fluids and Structures, Vol.13, pp.165~189.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王明珂:〈集體記憶與族群認同〉,《當代》第91期,1993年11月,頁6-19。
2. 王明珂:〈集體記憶與族群認同〉,《當代》第91期,1993年11月,頁6-19。
3. 邱貴芬:〈是後殖民,不是後現代—再談台灣身份╱認同政治〉,《中外文學》第23卷第11期,1995年4月,頁141-147。
4. 邱貴芬:〈是後殖民,不是後現代—再談台灣身份╱認同政治〉,《中外文學》第23卷第11期,1995年4月,頁141-147。
5. 邱貴芬:〈原住民女性的聲音:訪談阿烏〉,《中外文學》第26卷第2期,1997年7月,頁130-145。
6. 邱貴芬:〈原住民女性的聲音:訪談阿烏〉,《中外文學》第26卷第2期,1997年7月,頁130-145。
7. 陳器文:〈期待原住民圖像的出現〉,《文訊》205,2002年11月。
8. 陳器文:〈期待原住民圖像的出現〉,《文訊》205,2002年11月。
9. 楊翠:〈原音與女聲─跨世紀台灣文學的新渠徑〉,《文訊月刊》第170期,1999年12月,頁46-49。
10. 楊翠:〈原音與女聲─跨世紀台灣文學的新渠徑〉,《文訊月刊》第170期,1999年12月,頁46-49。
11. 楊翠:〈認同與記憶:以阿女烏的創作試探原住民女性書寫〉,《中外文學》第27卷11期,1999年4月,頁71-97。
12. 楊翠:〈認同與記憶:以阿女烏的創作試探原住民女性書寫〉,《中外文學》第27卷11期,1999年4月,頁71-97。
13. 孫大川:〈原住民文化歷史與心靈世界的摹寫—試論原住民文學的可能〉,《中外文學》第21卷,第7期,1992年12月。
14. 孫大川:〈原住民文化歷史與心靈世界的摹寫—試論原住民文學的可能〉,《中外文學》第21卷,第7期,1992年12月。
15. 孫大川:〈被迫讓渡的身體-高砂義勇隊所反映的意識構造〉,《當代》第212期,2005年4月1日