跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳炯男
研究生(外文):Jiung-nan Chen
論文名稱:混合車流下模擬式動態交通指派模式之研究-使用者均衡原則
論文名稱(外文):A Study of Micro-simulation Based Dynamic Traffic Assignment Model Under Mixed Traffic Flow Environment :The Principle of User Equilibrium
指導教授:胡大瀛胡大瀛引用關係
指導教授(外文):Da-Ying Hu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:交通工程與管理所
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:115
中文關鍵詞:模擬式動態交通指派模式MSA使用者均衡原則DynaTAIWAN
外文關鍵詞:MSAUser EquilibriumDynaTAIWANDynamic Traffic Assignment
相關次數:
  • 被引用被引用:7
  • 點閱點閱:670
  • 評分評分:
  • 下載下載:127
  • 收藏至我的研究室書目清單書目收藏:0
智慧型運輸系統(Intelligent Transportation System ,ITS),是結合電子、電腦、通訊等相關科技之下,整合人、車、路管理方式,以達到有效的交通管理。而在ITS架構中先進交通管理系統(advanced traffic management systems, ATMS)及先進駕駛者資訊系統(advances traveler information system, ATIS),期望透過對道路使用管理,對駕駛者提供即時性資料,以達到路網整體有效利用。靜態傳統運輸系統分析方法已無法考量與反應出動態交通車流變化,因此,動態交通指派理論自1990年代起已逐漸受到重視。
動態交通指派依其構建方法可分為數學規劃式、最佳控制化之動態指派模式、變分不等式與德州動態指派模式等四種動態指派模式。數學規劃式、最佳控制化之動態指派模式、變分不等式等指派模式在考量求解問題下,需將模式簡化及連續時間切割為片斷改以離散問題處理,造成所產生結果無法適當解釋交通量依時性變化,而德州動態指派模式,主要透過模擬過程,瞭解各模擬時段下路網上路段交通量變化。
本研究之模擬式動態交通量指派主要以使用者均衡原則為主,透過DynaTAIWAN模擬出路網中混合車流道路流量分佈型態,並計算出各路段之動態旅行成本,再依據動態旅行成本計算出各個指派時段下之依時性最短路徑,研究中路徑流量分配主要使用MSA(Method of Successive Averages)為更新路徑流量方法,再進行判斷兩個迴圈之路徑車流量分配比例是否小於收斂值。
本研究中模擬式動態交通量指派車種以小車與機車為主並於50節點路網中進行測試。探討動態使用者均衡之條件並討論動態使用者均衡之結果。
The Advanced Traffic Management systems (ATMS) and Advanced Traveler Information systems (ATIS), aim at providing the real-time information to travelers and improving traffic congestion in the network. The traditional transportation system analysis cannot consider the dynamics of traffic flows, thus the dynamic traffic assignment mode is a critical issue in the development of ITS. Four different approaches, including mathematical formulations, optimal control theory, variational inequalities, and simulation-based approach, have been constructed in developing dynamic traffic assignment methods. Due to their basic assumptions, these models are unable to explain time-dependent traffic flow patterns. In this research, a microsimulation-based DTA model is applied to model dynamic user equilibrium under mixed traffic flow conditions. In the mixed traffic flows, different vehicle classes are considerd, such as truck, passenger car, and motorcycles. The link travel times are calculated and applied in time-dependent shortest path calculation. The flow distribution follows the method of successive average method. Numerical experiments are conducted in a 50-node test network to illustrate the proposed approach, and observations on dynamic user equilibrium are made based on these numerical experiments.
誌謝 Ⅰ
中文摘要 Ⅱ
英文摘要 Ⅲ
目錄 Ⅳ
圖目錄 Ⅵ
表目錄 Ⅸ
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究方法與流程 2
第二章 文獻回顧 5
2.1 靜態交通量指派 5
2.2 動態交通量指派 7
2.2.1 數學規劃式 7
2.2.2 最佳控制理論 7
2.2.3 變分不等式 8
2.2.4 動態模擬指派模式 8
2.2.5 TRANSIMS 9
2.3 旅行時間成本 10
2.4 依時性最短路徑 11
2.5 多車種動態交通指派 12
2.6 DynaTAIWAN架構 13
第三章 動態交通指派模式架構及演算流程 16
3.1 動態交通指派模式 16
3.1.1 動態交通指派模式觀念架構 16
3.1.2 動態使用者均衡演算法 17
3.2 旅行成本 22
3.3 MSA演算法 25
3.4 依時性最短路徑演算法 26
3.5 模擬式動態交通指派程式結構及流程 29
3.5.1 模擬式動態交通量指派程式模組 29
3.5.2 DynaTAIWAN模組 30
3.5.3 成本計算模組 31
3.5.4 依時性最短路徑模組 32
3.5.5 路徑流量分配模組 34
3.5.6 車輛產生模組 37
第四章 DYNATAIWAN數值測試 39
4.1 數值測試環境 39
4.2 測試路網-50節點路網 39
4.3 數值路網實驗設計 41
4.3.1 流量需求分佈測試 42
4.3.2 依時性最短路徑測試 53
第五章 動態使用者均衡指派實驗測試 56
5.1 動態使用者均衡指派實驗設計 56
5.2 單一車種實驗 58
5.3 混合車流實驗 80
第六章 結論與建議 85
6.1 結論 85
6.2 建議 86

參考文獻 87
附錄 90
1.交通部(2001),「台灣地區智慧型運輸系統綱要計劃」。
2.伍靜怡(2002),即時應變事故之動態交通量指派方法論,台灣大學土木研究所碩士論文。
3.李俊賢(1996),在靜態模型中運用傅立葉轉換分析隨機性動態旅行時間之研究,國立台灣大學土木工程學研究所博士論文。
4.李達橦(2002),模擬式動態交通指派模式—系統最佳化原則之研究,逢甲大學交通工程與管理學研究所碩士論文,民國91年6月。
5.林蔚明(2004),路口延滯下路徑演算法之研究,逢甲大學交通工程與管理學研究所碩士論文。
6.邱敏華(2003),高速公路事故路段動態旅行時間模式之研究,國立臺灣大學土木工程學研究所碩士論文。
7.胡大瀛(2001),「動態路網模擬指派模式之建立」,運輸計劃季刊,第三十卷第一期,pp.1-32。
8.曾莉莉(1994),高速公路動態路段旅行時間函數研究,國立中央大學土木工程學研究所碩士論文。
9.運研所(2004),區域智慧型運輸系統示範計畫-核心交通分析與預測系統(第一年期)。
10.Bliemer, M. C.J (2001), Analytical dynamic traffic assignment with interaction user-classes: theoretical advances and applications using a variational inequality approach. Ph.D. thesis, Delft University of Technology, The Netherlands.
11.Bliemer, M. C.J. and Bovy, P. H.L. (2003),” Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem”, Transportation Research Part B: Methodological, Volume: 37, Issue: 6, pp. 501-519.
12.Carey, M. (1986), “A Constraint Qualification for a Dynamic Traffic Assignment Model”, Transportation Science, Vol. 20, pp. 55-58.
13.Carey, M. (1987), “Optimal Time Varying Flows on Congested Networks”, Operations Research, Vol. 35, No. 1, pp. 58-69.
14.Chen, H. K. (1999), Dynamic Travel Choice Models: A Variational Inequality Approach, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag , pp. 320.
15.Dafermos, S.C. (1971), An extended traffic assignment model with applications to two-way traffic. Transportation Science 5, pp.366–389.
16.Dafermos, S.C. (1972), The traffic assignment problem for multiclass-user transportation networks. Transportation Science 6, pp.73–87.
17.Friesz, T. L., Luque, J., Tobin, R. L., and Wie, B. W. (1989)., “Dynamic Network Traffic Assignment Considered as a Continuous Time Optimal Control Problem”, Operations Research, Vol. 37, No. 6, pp. 893-901.
18.Ghali, M. O. and Smith, H. J. (1992), “Optimal Dynamic Traffic Assignment of a Congested City Network”, Proceedings of the Second International Capri Seminar on Urban Traffic Network, Capri, Italy.
19.Ho, J. K. (1980), “A Successive Linear Optimization Approach to the Dynamic Traffic Assignment Problem”, Transportation Science, 14, pp. 295-305.
20.Hoogendoorn, S. P. and Bovy P. H.L. (2000), “Continuum modeling of multiclass traffic flow”, Transportation Research Part B 34, pp.123-146.
21.Hoogendoorn, S. P. and Bovy P. H.L. (2001), Platoon-Based Multiclass Modeling of Multilane Traffic Flow, Networks and Spatial Economics, pp.137-166.
22.Hall, R. W. (1986), “The Fastest Path through a Network with Random Time-Dependent Travel Times,” Transportation Science, Vol.20, No.3, pp.182-188.
23.Lo, H.K. (1999)., A dynamic Traffic Assignment Formulation That Encapsulates the Cell-Transmission Model. In: Ceder, A. (Ed.), Transportation and Traffic Theory. Pergamon, Oxford, pp. 327–350.
24.Lo, H.K., Ran, B. and Hongola, B. (1996), “Multiclass dynamic tra.c assignment model: Formulation and computational experiences.”, Transportation Research Records 1537, pp.74–82.
25.Merchant, D. K. and Nemhauser, G. L. (1978a), “ Model and an Algorithm for the Dynamic Traffic Assignment Problems”, Transportation Science, Vol. 12, No. 3, pp. 183-199.
26.Merchant, D. K. and Nemhauser, G. L. (1978b), “ Optimality Conditions for a Dynamic Traffic Assignment Model”, Transportation Science, Vol. 12, No. 3, pp. 200-207.
27.Peeta, S.(1994), System Optimal Dynamic Traffic Assignment in Congested Networks with Advanced Information Systems, Ph.D. dissertation, the University of Texas at Austin.
28.Rickert, M. and Nagel, K. (2001), Dynamic traffic assignment on parallel computers in TRANSIMS, Future Generation Computer Systems 17, pp.637-648.
29.Ran, B. and Boyce, D. E. (1994), ”Dynamic Urban Transportation Network Models:Theory and Implications for Intellingent Vehicle Highway Systems,”Lecture Notes in Economics and Mathematical Systems 417,Springer-Verlag,New York.
30.Ran, B., and Boyce, D.E (1996), Modeling Dynamic Transportation Networks: An Intelligent Transportation System Oriented Approach, Springer-Verlag, Berlin, pp. 356.
31.Ran, B., Boyce, D. E., and LeBlance, L. J. (1993), “A New Class of Instantaneous Dynamic User-optimal Traffic Assignment Models”, Operations Research, Vol. 41, No. 1.
32.Ran, B., Lo, H.K., and Boyce, D.E . (1996), A formulation and solution algorithm for a multi-class dynamic traffic assignment model. In: Lesort, J.-B. (Ed.), Transportation and Traffic Theory. Pergamon, Oxford, pp. 195–216.
33.Ran, B., Rouphail, N. M., Tarko, A., and Boyce, D. E. (1997), “Toward a Class of Link Travel Time Functions for Dynamic Assignment Models on Signalized Networks,” Transportation Research Part B, Vol.31, No.4, pp.277-290.
34.Sheffi, Y. (1985), Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, NJ,.
35.Wardrop, J. G. (1952), “Some Theoretical Aspects of Road Traffic Research”, Proceedings, Institution of Civil Engineers II(1), pp. 325-378.
36.Wynter, L.M. (1995), Advances in the theory and application of the multiclass traffic assignment problem. Ph.D. thesis, Ecole National des Ponts et Chauss’ ees, France.
37.Ziliaskopoulos, A. K. and Mahmassani, H. S. (1996), “A Note On Least Time Path Computation Considering Delays and Prohibitions for Intersection Movements,” Transportation Research Part B, Vol.30, No.5, pp.359-367.
38.Ziliaskopoulos, A. K. and Mahmassani, H. S. (1996), “Time-Dependent, Shortest-Path Algorithm for Real-Time Intelligent Vehicle Highway System Applications,” Transportation Research Record 1408, pp.94-100.
39.Ziliaskopoulos, A. K., Kotzinos, D. and Mahmassani, H. S. (1997), “Design and Implementation of Parallel Time-Dependent Least Time Path Algorithm for Intelligent Transportation System Applications,” Transportation Research PartC, Vol.5, No.2, pp.95-107.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top