跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳文生
研究生(外文):Vin-Cent Wu
論文名稱:UV-VIS光譜應用於界面活性劑臨界微胞濃度之量測
論文名稱(外文):Measurement Critical Micelle Concentration of Surfactant Using UV-VIS Spectroscopy
指導教授:袁維勵
指導教授(外文):Wei-Li Yuan
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料與製造工程所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:112
中文關鍵詞:UV–VIS臨界微胞濃度
外文關鍵詞:UV-VISCMC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2806
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
紫外光及可見光吸收光譜分析儀(UV–VIS spectrometer)應用於界面活性劑臨界微胞濃度(CMC,critical micelle concentration)之量測為一方便且再現性佳之定量方法。利用界面活性劑水溶液對UV–VIS之某極大吸收波峰於微胞形成時,有往長波長方向偏移之現象(紅移),可定出界面活性劑於特定溫度、酸鹼度及溶劑種類等條件下之CMC。此結果有利於微胞反應系統之控制與分子團簇現象的探討。目前對於臨界微胞濃度量測之方法主要有下列數種:UV–VIS吸收光譜法、表面張力計法、電導度法等。因UV–VIS法可獲得對界面活性劑系統較其他方法更多之資訊(如微胞結構變化等),故有探討價值。本研究將針對常用之界面活性劑,如陽離子性之CTAB、陰離子性之SDS及非離子性之Tween 80等,以UV–VIS光譜分析進行臨界微胞濃度之量測,並與相關文獻資料進行比對,以探討其間之一致性及廣泛性。將結果繪製成三維之反應曲面圖後,由等高線之極大點可以定出CMC,並發現所得之數值與文獻資料相當吻合。
UV-VIS spectroscopy applied to the determination of critical micelle concentration (CMC) of surfactant is a convenient method with good reproducibility. Red-shift of a particular peak in the UV-VIS spectrum could be observed when surfactant micelles are formed at CMC. Therefore, the CMC under various conditions of temperature, pH, and solvent could be determined. In addition, the results from UV-VIS data are useful in controlling the micellar reactors and in studying the molecular clustering phenomena. Current ways of measuring CMC include UV-VIS spectroscopy, surface tension change, and electro-conductivity change of the surfactant solutions. Owing to more information such as micelle structural change that could be obtained, the research of finding CMC from UV-VIS spectra was conducted. In this work three commonly used surfactants were tested, namely, the cationic CTAB, anionic SDS, and nonionic Tween 80. Analyzed with UV-VIS spectroscopy and compared with the literature data, the CMC of the three aqueous surfactant solutions were determined at some particular local maximum peaks enclosed by the isotherms from the three dimensional regressed response surfaces. Good consistency was found for all the samples in the CMC values from UV-VIS compared to the literature ones.
摘要
ABSTRACT
目錄
圖目錄表目錄
第一章 緒論
1.1 前言 ………………………………………………………….1
1.2 文獻回顧
1.2.1 界面活性劑文獻回顧 ……………………………………3
1.2.1.1 界面活性劑熱力學系統特性與應用…………….4
1.2.1.2 乳化理論與定義………………………………….5
1.2.1.3 界面活性劑溶液之光學特性…………………….6
1.2.2 界面活性劑系統分散性…………………………………..7
1.2.2.1 界面活性劑之分子結構…………….……………7
1.2.2.2 界面活性劑之分類……………….………………8
1.2.2.3 界面活性劑溶液之特性.........................................10
1.2.2.4 微胞與逆微胞.........................................................11
1.2.2.5 微乳液.....................................................................14

第二章 實驗原理
2.1 UV-VIS紫外光-可見光譜分析法………………………. 17
2.1.1 分光光度計的構造和性能………..………………….... 18
2.1.2 紫外光 - 可見光吸收光譜之產生………….……..….. 19
2.1.3 電子能階躍遷之類型………………………………….. 20
2.1.4 化合物官能基團類型與電子能階躍遷相關性……….. 22
2.1.5 紫外光譜吸收帶之分類……………………………….. 23
2.1.6 影響電子能階躍遷之因素…………………………….. 24
2.1.7 Tyndall現象……………………………………………. 25
2.1.8 Rayleigh公式………………………………………….... 26
2.1.9 分光光度計之操作原理( Lambert-Beer定律)……….. 27
2.2 微胞之形狀與特性………………...................................... 30

第三章 實驗方法及步驟
3.1 實驗藥品與儀器………………………………………...... 33
3.1.1 藥品 ………………………………………………………. 33
3.1.2 儀器 ………………………………………………………. 34
3.1.3 實驗配置…………………………………………………... 35
3.2 實驗流程圖
3.2.1 紫外光可見光譜分析儀操作與樣品分析流程…………... 37
3.2.2 紫外光可見光譜分析儀操作與樣品分析流程…………... 38
( 含NaCl 鹽類水溶液系統 )
3.2.3 電導度計測量界面活性劑臨界微胞濃度操作流程……... 39
3.2.4 表面張力計測量界面活性劑臨界微胞濃度操作流程…... 40
3.2.5 表面張力計介紹 …………………………………………. 41
3.2.6 雷射粒徑分析儀 ................................................................. 49
3.2.7 穿透式電子顯微鏡 ………………………………………. 50
第四章 結果與討論
4.1 SDS界面活性劑之吸收波長-濃度-吸收度關係 ...... 50
4.1.1 SDS界面活性劑之211 nm波長濃度與吸收度關係(I)…..51
4.1.2 SDS界面活性劑於211 nm波長濃度與吸收度關係(II)….53
4.1.3 SDS 界面活性劑之表面張力與濃度,PH值關係 ……….53
4.1.4 SDS 界面活性劑之電導度與濃度,PH值關係 ………… 54
4.1.5 反應曲面法分析SDS界面活性劑電導度、PH與濃度關係. 55
4.1.6 SDS界面活性劑UV-VIS吸收度(ABS)、波長( λ)與濃度
關係………………………………………………………... 57
4.1.7 0.2 M NaCl水溶液中SDS界面活性劑之UV-VIS吸收度
、波長與濃度關係………….……………….……………59
4.1.8 0.1 M NaCl水溶液中SDS界面活性劑之UV-VIS吸收度
、波長與濃度關係圖…………………………………….. 60
4.2 UV-VIS 法應用於CTAB臨界微胞濃度值量測………. 62
4.2.1 UV-VIS 紫外光可見光譜吸收度以反應曲面法作圖之相關統計與迴歸數據………………………………………….. 63
4.2.2 單位重量之電導度-表面張力-CTAB濃度 關係………… 64
4.2.3 UV-VIS 於酸性條件下於214 nm 波長吸收度與濃度關係.66
4.2.4 表面張力法量測CTAB臨界微胞濃度………………………67
4.2.5 UV-VIS吸收光譜法之界面活性劑濃度、吸收度與
波長關係……..………………………………………….. 69
4.2.6 最大吸收波長(λmax)與CTAB 濃度關係………………...70
4.2.7 單位重量電導度法……………………………………….71
4.3 UV-VIS 紫外光-可見光譜吸收法量測Tween 80 之CMC
4.3.1 單位重量電導度法應用於Tween 80 界面活性劑臨界微
胞濃度量測 …………………………………………….. 74
4.3.2 表面張力法應用於Tween 80 界面活性劑臨界微胞濃度
量測……………………………………………………… 75
4.3.3 最大吸收波長(λmax)與Tween 80濃度關係………….. .76
4.3.4 UV-VIS 法應用於STS臨界微胞濃度值量測…………. .78
4.3.5 UV-VIS 紫外光可見光譜吸收度以反應曲面法作圖之相
關統計與迴歸數據 ( STS )…………………………… 79
4.3.6 UV-VIS 紫外光可見光譜吸收度以反應曲面法之STS界
面活性劑吸收度,波長與表面張力相關性分析…….... 80
4.3.7 STS界面活性劑UV-VIS吸收光譜波長-吸收度-濃度關
係………………………………………………………… 81
4.3.8 STS界面活性劑對大吸收度對應波長與濃度關係……. 82
4.3.9 STS界面活性劑電導度與濃度關係……………………. 83

第五章 UV-VIS於臨界微胞濃度量測相關應用
5.1 自行合成對甲苯磺酸鈉之製備…………………………….. 84
5.1.1對甲苯磺酸(p-toluene sulfonic acid)之合成………..84
5.2 FURAN 樹脂微粒之製備……………………………………..93
5.2.1實驗步驟…………………………………………………….93
5.2.2實驗結果與討論.……………………………………………95

第六章 結論與建議
6.1結論 ………………………………………………………………..99
6.2建議 ………………………………………………………………101
誌謝
附錄
1. J Penfold, R K Thomas, E Simister, E Lee, A Rennie Neutron Sci. Div., Rutherford Appleton Lab., Chilton, Didcot, UK Print publication: Issue S (1 December 1990)
2. I Ofek, E Whitnack, E H Beachey, “Hydrophobic interactions of group A streptococci with hexadecane droplets.” J Bacteriol. ; 154(1), p.139–145. (1983)
3. Francis W. Starr, Stephen T. Harrington, Bruce M. Boghosian, H. Eugene “Interface Roughening in a Hydrodynamic Lattice-Gas Model with Surfactant” Stanley Center for Polymer Studies, Center for Computational Science, and Department of Physics, Boston University, Boston.
4. Chidambaram , Burgess J.AAPS, “Effect of Nonionic Surfactant on Transport of Surface-Active and Non-Surface-Active Model Drugs and Emulsion Stability in Triphasic Systems .” PharmSci. (2000)
5. Steve Kline, Adam Pivovar, Nicholas Rosov, “Diffusion of Surfactant Micelles” , NIST Center for Neutron Research, June 18-22, (2001).
6. Steve O.Nielsen, Goundla Srinivas, Carlos F. Lopez, Michael L. Klein., “Modeling Surfactant Adsorption on Hydrophobic Surfaces” (2001).
7. Oliviero Cesare, Coppola Luigi, La Mesa Camillo, Ranieri Giuseppe A., Terenzi. M., “Gemini surfactant-water mixtures: some physical-chemical properties.”Colloids and Surfaces, Physicochemical and Engineering Aspects, 201(1-3), 247-260,(2002).
8. “ Emulsifier “IUPAC Compendium of Chemical Terminology 2nd Edition, 31, 612, (1997) 1972.
9. “Surfactant” Wikipedia, the free encyclopedia.
10. “Cationic/anionic surfactant complex antistatic and fabric softening emulsion for wash cycle laundry applications” , United States Patent 4888119.
11. Jean-Louis salager, “Surfactant types usages”, Mérida-Venezuela ,Versión # 2 (2002)
12. T. P. Hoar , J. H. Schulman, Nature, 152 , 102 (1943).
13. “Reverse micelle (or reversed micelle)” ,IUPAC Compendium of Chemical Terminology 2nd Edition, 66, 1161, (1997) ,1994.
14. “Annual Review of Physical Chemistry “ 11 , 169-186 , (October 1960) .
15. Liang Guo , Thesis in Materials Science and Engineering , Pennsylvania State University , The Graduate School College of Earth and Mineral Sciences, “GELATION AND MICELLE STRUCTURE CHANGES OF AQUEOUS POLYMER SOLUTIONS”, 2003.
16. P. Becher, “ Emulsion, Theory and Practice”,2nd ed.,P.2,Reinhold,New York (1966).
17. M. k. Sharman , D. O. Shah, “Macroemulsion and Microemulsion, Theory and applications”, Paper No.1, ACS Symposium Series 272 , American Chemical Society , Washington D. C. , (1985).
18. Hartley. G. S., Collie. B., Samis, C. S., Trans. Faraday Soc. 32, 795 (1936).
19. Salager J.L. , A. Forgiarini , L. Marquez , A. Peña , “Emulsion Inversion as a Tool in Industrial Processes”, Third World Congress on Emulsion, Lyon (F), Sept. (2002) .
20. Manna A, Kulkarni BD, Ahedi RK, Bhaumik A, Kotasthane AN , “Synthesis of Silicalite-1 in Bicontinuous Microemulsion Containing AOT” , Chemical Engineering Division , National Chemical Laboratory , Pune, 411 008, India.
21. Soulignac J. C. , Lamotte M., “A UV-VIS spectrophotometer for absorbance measurements of weakly transparent light scattering samples”, Applied Spectroscopy, Volume 41, Issue 7, 1220-1226 , (09/1987).
22. M. L. Breen , A. D. Dinsmore , R. H. Pink , S. B. Qadri , B. R. Ratna , “Sonochemically Produced ZnS-Coated Polystyrene Core-Shell Particles for Use in Photonic Crystals” October 27, (2000).
23 Harish Parala, Anjana Devi, Raghunandan Bhakta , Roland A. Fischer , “Synthesis of nano-scale TiO2 particles by a nonhydrolytic approach” , Journal of Materials Chemistry, 12(6), 1625 – 1627 , (2002).
24. N. Glinka , Peace Publishers , Moscow, circa “Colloids & The Tyndall Effect” from General Chemistry (1960).
25. David W. Hahn , “Light Scattering Theory” , Department of Mechanical and Aerospace Engineering , University of Florida, (2004).
26 夏紀鼎.界面活性劑和洗滌劑化學與工藝學.北京:中國輕工業出版社, (1996).
27 In S. Kim , Jong-Sup Park ,“Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry”, Applied Geochemistry , 16,1419–1428, (2001).
28 Hinze , “Critical micelle concentration(CMC)and aggregation number(N)data” (1987).
29 Adrian R.Rennis , S.F. Turner ,”Deatialed Structure of adsorbed CATB layers at the polystyrene/solution interface”, ISIS experimental report ,(1999).
30 Fundamentals of interfacial science.
31 刈米孝夫,界面活性劑的原理與應用,高立圖書有限公司(1996).

32 U. Schubert, N. Husing, “Synthesis of Inorganic Materials”, first edition, John Wiley & Sons, New York (2000)
33 D. Myers, “Surfaces, Interfaces, and Colloids, 2nd Edition”, John Wiley & Sons, New York (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top