跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:唐文洲
研究生(外文):wen-choul tang
論文名稱:三明治結構複合材料西式划船船體之製造
論文名稱(外文):Manufacturing the Rowing Boat Body by Sandwich Structures
指導教授:邱長塤
學位類別:碩士
校院名稱:逢甲大學
系所名稱:紡織工程所
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:69
中文關鍵詞:三明治結構複合材料西式划船
外文關鍵詞:compositeRowing BoatSandwich Structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗之目的在於使用VARTM之技術製造西式划船甲板,並以手積層法搭配真空袋之技術製造三明治結構複合材料西式划船船體,三明治結構芯材為蜂巢式結構板,面材為3K碳纖維織物、玻璃纖維織物和克維拉纖維織物等三種,本文亦針對船體之穩定性和扭角性質作探討。
經由實驗結果顯示:在本實驗中VARTM之最佳條件為:樹脂與硬化劑比例為3:1,樹脂預熱溫度為60℃、45分鐘,樹脂灌注孔孔距為10~15公分。三明治結構板其撓曲強度與撓曲模數大小為Carbon/Glass >Carbon/Kevlar>Kevlar/Kevlar三明治結構板。其衝擊荷重與衝擊吸收能大小為Carbon/Kevlar>Carbon/Glass>Kevlar/Kevlar三明治結構板;船體重量穩定性下降距離約2.0公分;船頭扭轉角度為1.9度船尾扭轉角度為1.6度。
The purpose of this study is to manufacture of the rowing boat deck by a VARTM process and fabricate the sandwich structural boat body by vacuum assistant hand lay-up process. The structures were composed by Honeycomb core with fabric skins which was 3K carbon composite as the skin at the bottom with Glass and Kevlar being the upper skin above the core respectively. The stability and torsion properties of rowing boat were also discussed.
The experimental results showed that the better condition of VARTM process in this experiment was that the mixing ratio of resin and curing agent was 3:1.0, and resin was preheated at 60℃ and kept for 45 min. The distance between two injection channels was about 10~15 cm. The flexural strength and modulus of the test sandwich plates were Carbon/Glass >Carbon/Kevlar>Kevlar/Kevlar in average. The impact load and the total energy absorbed by sandwich plates were Carbon/Kevlar>Carbon/Glass>Kevlar/Kevlar individually. Moreover, the deflection of the test of weight- stability of the rowing boat was approximately 2.0 cm. The torque of the bow and the stern were roughly1.93and 1.6, respectively.
目錄
中 文 摘 要……………………………………………………………i
英 文 摘 要……………………………………………………………ii
目 錄………………………………………………………………… iii
圖 目 錄……………………………………………………………… vi
表 目 錄……………………………………………………………… ix

第一章 前言…………………………………………………………… 1
1.1 引言……………………………………………………… 1
1.2 研究動機與目的………………………………………… 5
1.3 文獻回顧………………………………………………… 6

第二章 實驗……………………………………………………………10
2.1 實驗材料…………………………………………………10
2.2 實驗儀器與設備…………………………………………11
2.3 實驗流程…………………………………………………12
2.3.1 VARTM製造甲板實驗流程與示意圖………………… 12
2.3.2 VARTM製造甲板實驗步驟…………………………… 14
2.3.3 船體製造流程……………………………………………18
2.3.3.1 船體模具製造流程………………………………………19
2.3.3.2 製造船體實驗步驟………………………………………25
2.3.3.3 纖維體積含有率測試……………………………………28
2.3.3.4 撓曲測試…………………………………………………29
2.3.3.5 落重衝擊測試……………………………………………30
2.3.3.6 船體穩定性測量…………………………………………33
2.3.3.7 船體扭角測試……………………………………………34

第三章 結果與討論……………………………………………………35
3.1 以VARTM之技術製造西式划船甲板………………… 35
3.1.1 纯樹脂硬化時間對VARTM之影響…………………… 35
3.1.2 開孔距離(開孔數)對灌注時間的影響………………37
3.1.3 預熱溫度對樹脂灌注時間的影響………………………39
3.1.4 甲板各部位之纖維體積含有率…………………………41
3.2 不同材料組成對三明治結構撓曲性能之影響…………43
3.3 不同材料組成對三明治結構衝擊性能之影響…………49
3.4 船體之穩定性測量………………………………………58
3.5 船體之扭角測量…………………………………………60

第四章 結論………………………………………………………… 62
參考文獻……………………………………………………………… 63
1.顧宜,複合材料,新文京開發出版社PP.1 PP.7~8 PP.322~333,2002
2.游錫揚,纖維複合材料,國彰出版社,PP1-4,1997
3.郭文雄,許明發,複合材料,高立圖書有限公司 87年 2月
4.Cather A. Ploskonka, “ Fundamentals of Composites Manufacturing:Materials, Methods, and Applications ” , Socity of Manufacturing Engineers Publications Department, pp.9-11, 1989.
5.Jack R. Vinson, Ph.D.,P.E., The Behavior of Sandwich Structure of isotropic and composite materials, PP.1-2, Techmomic Publishing company, Inc.,1999
6.R.J. Johnson, R. Pitchumani*, Enhancement of .ow in VARTM using localized induction heating, pp. 2201-2215, vol.63, Composites Science and Technology, 2003
7.Jongman Kim, Stephen R. Swanson, Design of sandwich structures for concentrated loading, pp.365-373, Composite Structure 52, 2001
8.Nitin Kulkarni, Hassan Mahfuz, Shaik Jeelani, Leif A. Carlsson, Fatigue crack growth and life prediction of foam core sandwich composites flexural loading, pp.499-505, Composite Structure 59, 2003
9.G. Belingardia,*, M.P. Cavatortaa, R. Duellab, Material characterization of a composite–foam sandwich for the front structure of a high speed train, PP.13–25, Composite Structures 61 , 2003
10.Hwai-Chung Wu*, Bin Mu, Kraig Warnemuende, Failure analysis of FRP sandwich bus panels by finite element method, PP.51–58, Composites: Part B 34, 2003
11.M.A. Dweiba, B. Hu b, A. O_Donnella, H.W. Shenton b, R.P. Woola,*, All natural composite sandwich beams for structural applications, PP. 147–157, Composite Structures 63 ,2004
12.Vladimir S. Sokolinsky*, Hongbin Shen, Lev Vaikhanski, Steven R. Nutt, Experimental and analytical study of nonlinear bending response of sandwich beams, PP. 219–229, Composite Structures 60 ,2003
13.M.P.Boyla, J.C. Roberts, P.D.Wienhold, G.Bao, G.J.White, Experimental and analytical study of results for bucking and post-bucking of orthotropic rectangular sandwich panels,PP.375-380, Composite Structures 60,2001
14.J.R. Banerjee *, Free vibration of sandwich beams using the dynamic stiffness method, PP.1915–1922, Computers and Structures 81,2003
15.Thomas E. Lacy*, Youngkeun Hwang, Numerical modeling of impact-damaged sandwich composites subjected to compression-after-impact loading,PP. 115–128, Composite Structures 61, 2003
16.C. Borsellino, L. Calabrese, A. Valenzab,*, Experimental and numerical evaluation of sandwich composite structures, PP.1709–1715, Composites Science and Technology 64 ,2004
17.L. Roy Xu a, Ares J. Rosakis b,*, Impact failure characteristics in sandwich structures.Part II: Effects of impact speed and interfacial strength, PP.4237–4248, International Journal of Solids and Structures 39, 2002
18.M. Meoa,*, A.J. Morris a, R. Vignjevica, G. Marengob, Numerical simulations of low-velocity impact on an aircraft sandwich panel, PP. 353–360, Composite Structures 62 ,2003
19.Sanjib Goswami, Wilfried Beeker The effect of facesheet core delamination in sandwich structures under transverse loading, PP.515-521, Composite Structures 54 ,2001
20.Yihong He, Amjad J. Aref*, An optimization design procedure for fiber reinforced polymer web-core sandwich bridge deck systems, PP. 183–195, Composite Structures 60 ,2003
21.S. Mahdia, B.A. Gamaa,b ,S. Yarlagaddaa, J.W. Gillespie Jr.a,b,c,*, Effect of the manufacturing process on the interfacial properties and structural performance of multi-functional composite structures, PP. 635–647, Composites: Part A 34,2003
22.Burak Bekisli, Joachim L. Grenestedt*, Experimental evaluation of a balsa sandwich core with improved shear properties, PP. 667–674, Composites Science and Technology 64,2004
23.Liviu Librescu *, Terry Hause, Recent developments in the modeling and behavior of advanced sandwich constructions: a survey, PP. 1-17, Composite Structures 48, 2000
24.Md.Akil Hazizan. W.J. Cantwell, The low velocity impact response of foam-based sandwich structures PP.193-204, Composites: Part B 33,2002
24. Giuseppe Demelio, Katia Genovese, Carmine Pappalettre, An experimental investigation of static and fatigue behaviour of sandwich composite panels joined by fasteners, PP.299-308, Composites: Part B 32,2001
25. S. Vijayakumar*,Parametric based design of CFRP honeycomb sandwich cylinder for a spacecraft, PP. 7–12, Composite Structures 65, 2004
26. Yoshiaki Yasui*,Dynamic axial crushing of multi-layer honeycomb panels and impact tensile behavior of the component members, PP. 659-671International Journal of Impact Engineering 24 ,2000
27. Grant Scha!nera, Xiang-Dong E. Guob, Matthew J. Silvac, Lorna J. Gibsond,*, Modelling fatigue damage accumulation in two-dimensional Voronoi honeycombs, PP. 645-656, International Journal of Mechanical Sciences 42 ,2000
28.H.X. Zhu, N.J. Mills*, The in-plane non-linear compression of regular Honeycombs, PP. 1931-1949, International Journal of Solids and Structures 37, 2000
29.A.Petras, M.P.F.Sutclitte*, Failure mode maps for honeycomb sandwich panels, PP.237-252, Composite Structures 44, 1999
30.Hyeung-Yun kim*, Woonbong HwangEffect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams, PP.51-62, Composite Structures 55, 2002
31.A.W.Chan ,R.J.Morgan, "Modeling Preform Impregnation and Void Formation in Resin Transfer Molding of Unidirectional Composites", SAMPE Quarterly 23, 1992 , pp.48-52.
32.Fowler G., Phifer S.,"Resin Transfer Molding for High Fiber/Low Void Content", 38th Inter. SAMPE Sym., 1993.
33.Parnas R.S., Phelan F.R. , "The Effects of Heterogeneities on Resin Transfer Molding Performs on Mold Filling", 36th Inter. SAMPE Sym. 1991.
34.Young Roak Kim et al. "Resin Flow Through Fiber Reinforcements During Composite Processing ", 22th Inter. SAMPE Tech. Conf., 1990.
35.Pastore C., "Role of Inhomogeneities in the Damage Resistance of Textile Composites", 25th Inter. SAMPE Tech. Conf., 1993.
36.Michael F.Foley, Timothy Gutowski, "The Effect of Process Variables on Permeability on the Flexible Resin Transfer Molding(FRTM) Process", 23rd Inter. SAMPE Tech. Conf., 1991, pp.326-340.
37.Richard S.Parnas, Andrew J.Salem, Thomas A.K.Sadiq,Hsin-Peng Wang, Suresh G. "The Interaction between Micro- and Macro- Scopic Flow in RTM Preforms", Composites Structures 27 ,(1994),pp.93-107.
38.T.Staffan, B.Rikard, "Influence from Procedd Parameters on Void Formation on Resin Transfer Molding" Polymer Composites , 1994, Vol.15, No.1, pp.25-33.
39.Alexis Boccard , Woo Il Lee , George S.Springer ,"Model for Determining the Vent Locations and the Fill Time of Resin Transfer Molds", 1995, Vol.29, No.3, pp.306-333.
40.G.R.Palmese, V.M.Karbhari, "Effects of Sizings on Microscopic Flow in Resin Transfer Molding", Polymer Composites, 1995, Vol.15, No.4 , pp.313-318.
41.J.Varna, R.Joffe, L.A.berglund, "Effect of Voids on Failure Mechanisns in RTM Laminates",Composites Science and Technology 53, (1995), pp.241-249.
42.Npatel, L.James Lee, "Effects of Fiber Mat Architecture of Void Formation and Removal in Liquid Composite Molding", Polymer Composites, 1995, Vol.16, No.5, pp.386-399.
43.C. Lekakou, M.A.K. Johari, D. Norman and M.G. Bader, Measurement Techniques and Effects on in-plane Permeability of Woven Cloths in Resin Transfer Moulding, Composites:part A 27A (1996) 401-408.
44.Zhong Cai, "Estimation of the Permeability of Fibrous Preforms for Resin Transfer Moulding Processes", Composites Manufacturing Vol.3 No.4, 1992, pp251~257.
45. W.D. Brouwer*, E.C.F.C. van Herpt, M. Labordus, Vacuum injection moulding for large structural applications, PP. 551–558, Composites: Part A 34 (2003)
46.Jeffrey A. Acheson, Pavel Simacek, Suresh G. Advani*, The implications of fiber compaction and saturation on fully coupled VARTM simulation, pp. 159-169, vol.35, Part A: applied science and manufacturing, Composites, 2004.
48.Kuang-Ting hsiao, Suresh G. Asvani, Flow sensing and control strategies to address race-tracking disturbances in RTM. Part Ⅰ:design and algorithm development, pp. 1149-1159, vol.35, Part A: applied science and manufacturing, Composites, 2004.
49. Moon Koo Kang, Jae Joon Jung, Woo Il Lee*, Analysis of resin transfer moulding process with controlled multiple gates resin injection, pp. 407-422, vol.31, Part A: applied science and manufacturing, Composites, 2000.
50. Douglas S. Cairnsa,*, Dell R. Humbertb, John F. Mandellc, Modeling of resin transfer molding of composite materials with oriented unidirectional plies, pp. 375-383, vol.30, Part A: applied science and manufacturing, Composites, 1999.
51.Brian W. Grimsley, Pascal Hubert, Xiaolan Song, Roberto J. Cano, Alfred C. Loos, R. Byron Pipes, Flow and compaction during the VARTM process, NASA Langley Research Center, Hampton, Virginia 23681.
52. Deepak Srinivasaguptaa,1, Babu Josepha,*, Prasun Majumdarb, Hassan Mahfuzb, Effect of processing conditions and material properties on the debond fracture toughness of foam-core sandwich composites: process model development, PP. 1085–1095 , Composites: Part A 34 ,2003
53. Jin Dai *, H. Thomas Hahn, Flexural behavior of sandwich beams fabricated by vacuum-assisted resin transfer molding, PP. 247–253, Composite Structures 61, 2003
54. C. Ulven a, U.K. Vaidya a,*, M.V. Hosur b, Effect of projectile shape during ballistic perforation of VARTM carbon/epoxy composite panels, PP. 143–150, Composite Structures 61, 2003
55. Tom J. Wu* & H. Thomas Hahn, THE BEARING STRENGTH OF E-GLASS/VINYL-ESTER COMPOSITES FABRICATED BY VARTM PP.1519-1529, Composites Science and Technology 58, 1998
56. R.J. Johnson, R. Pitchumani*, Enhancement of flow in VARTM using localized induction heating PP. 2201–2215, Composites Science and Technology 63, 2003
57. Jeffrey A. Acheson, Pavel Simacek, Suresh G. Advani*, The implications of fiber compaction and saturation on fully coupled VARTM simulation, PP. 159–169, Composites: Part A 35, 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊