|
【1】Shiah, Y. C. and Tan, C. L., “Determination of Interior Point Stresses in Two Dimensional BEM Thermoelastic Analysis of Anisotropic Bodies” International Journal of Solids and Structures, Vol. 37, pp. 809-829, Nov. 1999. 【2】Clemens, D.L., Thermal Stress in an Anisotropic Elastic Half-Space, SIAM J. Appl. Math., Vol. 24, No. 3, pp. 332-337, May, 1973. 【3】Rahman, M. (2003), The axisymmetric contact problem of thermoelasticity in the presence of an internal heat source, International Journal of Engineering Science, Vol. 41, Issue 15, pp. 1899-1911, September. 【4】Qin, Qing-Hua (1999), Thermoelectroelastic Green’s function for thermal load inside or on the boundary of an elliptic inclusion, Mechanics of Materials, Vol. 31, Issue 10, pp. 611-626, October. 【5】Sherief, H. H. and Magahed, F. F., 1999. A two-dimensional thermoelasticity problem for a half space subjected to heat sources, International Journal of Solids and Structures 36 (9), 1369-1382. 【6】Gipson, G. S. and Camp, C. V., (1985), Effective use of Monte Carlo Quadrature for body force integrals occuring in integral form of elastostatics. In: Proc. 7th Int. Conf. On Boundary Elements, pp. 17-26. 【7】Camp, C. V. and Gipson, G. S., (1992), Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena (Springer-Verlag, Berlin). 【8】Lachat, J. C., 1975. Further development of the boundary integral technique for elastostatics, Ph.D. Thesis, Southampton University. 【9】Deb, A. and Banerjee, P. K. (1990), BEM for general anisotropic 2D elasticity using particular integrals, Commun. Appl. Num. Mech. 6:111-119. 【10】Nardini, D. and Brebbia C. A., (1982). A new approach to free vibration analysis using boundary elements. In: Boundary Element Methods in Engineering, Computational Mechanics Publications, Southampton and Springer-Verlag, Berlin and New York. 【11】Nowak, A. J., 1989. The Multiple Reciprocity Method of Solving Transient Heat Conduction Problems. In: Boundary Elements XI, Vol. 2, Computational Mechanics Publications, Southampton and Springer-Verlag, Berlin and New York. 【12】Nowak, A. J. and Brebbia, C. A., 1989. The Multiple Reciprocity Method: A New Approach for Transforming BEM Domain Integrals to the Boundary. Engineering Analysis 6 (3), 164-167. 【13】Rizzo, F. L.: Shippy, D. J., 1977. An advanced boundary integral equation method for three-dimensional thermoelasticity. Int. J. Numerical Methods Engng. 11: 1753-1768. 【14】Cheng, A.H.D., Chen C.S., Golberg, M.A. and Rashed, Y.F., 2001. BEM for thermoelasticity and elasticity with body forces – a revisit, Engng. Analysis Boundary Elements, Vol. 25, pp. 377-387. 【15】Shiah, Y. C. and Tan, C. L., 1999a. Exact boundary integral transformation of the thermoelastic domain integral in BEM for general 2D anisotropic elasticity, Computational Mechanics 23, 87-96. 【16】Shiah, Y. C. and Tan, C. L., “Exact Boundary Integral Transformation of the Thermoelastic Domain Integral in BEM for General 2D Anisotropic Elasticity”, Journal of Computational Mechanics, Vol. 23, pp. 87-96, June, 1998. 【17】Shiah, Y. C. and Tan, C. L., 1999b. Determination of interior point stresses in two-dimensional BEM thermoelastic analysis of anisotropic bodies, Int. J. Solids Struct 37, 809-829. 【18】Ming-Hsien Hsieh, Chien-Ching Ma, Analytical investigations for heat conduction problems in anisotropic thin-layer media with embedded heat sources, International Journal of Heat and Mass Transfer, Vol. 45, pp.4117-4132.2002 【19】Chien-Ching Ma, Shin-Wen Chang, Analytical exact solutions of heat conduction problems for anisotropic multi-layered media, International Journal of Heat and Mass Transfer, Vol. 47, pp. 1643-1655, 2004 【20】 , Study of transient heat conduction in 2.5D domains using the boundary element method, Engineering Analysis with Boundary Elements, Vol. 28, pp.593-606, 2004 【21】Banerjee, P.K. and Butterfield, R. (1981), Boundary Element Methods in Engineering Science, McGraw-Hill, Maidenhead. 【22】Cruse T.A,“Two Dimension BIE Fracture Mechanics Analysis.” in Recent Advances in Boundary Element Methods, C.A. Brebbia (Ed.), 167-184 (1978) (Pentech Press, London). 【23】Weaver, J,“Three-Dimensional Crack Analysis”,Int. J. Solids Struct., 13, 321-330 (1977). 【24】Snyder, M.D. and Cruse, T.A.,“Boundary Integral Equation Analysis of Cracked Anisotropic Plates”,Int. J. Fracture,11, 315-328 (1975). 【25】Sokolnikoff, I. S. “Mathematical Theory of Elasticity.” McGraw-Hill, New York (1956) 【26】Rizzo, F. J. and Shippy, D. J., Int. J. Numerical Method in Engrg, Vol.11, 1753, 1977. 【27】Danson, D.,“Linear isotropic elasticity with body forces.” In: progress in boundary element methods, Brebbia, C. A., Ed., Pentech Press, London, 1983. 【28】Deb, A. and Henry Jr., D. P. and Wilson, E. B., “Alternative BEM formulation for 2D and 3D thermoelasticity.” International Journal of Solids and Structures, Vol. 27, Issue 13, pp. 1721-1738, 1991. 【29】Cruse, T.A., “Mathematical Foundations of the Boundary Integral Equation Method in Solid Mechanics”, Report NO.AFOSR-TR-77-1002 ,1977. 【30】Zhang, J. J., Tan, C. L., and Afagh, F. F., “A general exact transformation of body-force volume integral in BEM for 2d anisotropic elasticity”, Computational Mechanics., Vol. 19, pp. 1-10, 1996b. 【31】Mera, N.S., Elliott, L., Ingham, D.B., and Lesnic, D., A Comparison of Boundary Element Method Formulations for Steady State Anisotropic Heat Conduction Problems, Engineering Analysis with Boundary Elements, Vol. 25, pp. 115-128, 2001. 【32】Segerlind, L.J., Applied Finite Element Analysis, John Wiley, New York, 1984. 【33】Li, W. H., Fluid Mechanics in Water Resources Engineering, Allyn and Bacon, Toronto, 1983. 【34】Bruce, E. and Lejeune, A. (1989), An Effective Solution of the Numerical Problems at Multi-Domain Points for Anisotropic Laplace Problems, In Advances in Boundary Elements Vol. 2, Proc. 11th Int. Conf. Boundary Element Methods, Cambridge, MA, USA, Ed. C.A. Brebbia and J.J. Connor, Spring-Verlag, Berlin, 1989. 【35】Zhang, J. J., Tan, C. L., and Afagh, F. F., An argument redefinition procedure in the BEM for 2D anisotropic elastostatics with body forces. In: Proc. Symposium on Mechanics in Design, Toronto, May 6-9, Meguid, S. A., Ed., Vol. 1, pp. 349-358, 1996a. 【36】Zhang, J. J., Tan, C. L., and Afagh, F. F., A general exact transformation of body-force volume integral in BEM for 2d anisotropic elasticity. Comput Mech. 19: 1-10, 1996b. 【37】Tan, C.L., Gao, Y.L. and Afagh, F.F., “Boundary Element Analysis of Interface Cracks Between Dissimilar Anisotropic Materials”, Int. J. Solids Structures, Vol. 29, pp. 3201-3220, 1992. 【38】夏育群、陳春來編著,林一吉編譯,“邊界元素法入門介紹”,高立圖書,中華民國94年5月, ISBN 986-412-158-8.
|