跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴宏智
研究生(外文):Heng-Chih Lai
論文名稱:異向性材料點熱源熱應力之邊界元素法分析
論文名稱(外文):BEM Thermoelastic Analysis of Anisotropic Matericals with Concentrated Heat Sources
指導教授:夏育群夏育群引用關係
指導教授(外文):Y-C Shiah
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航空工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:110
中文關鍵詞:點熱源異向性熱彈力學邊界元素法
外文關鍵詞:BEMpoint heat sourceanisotropic thermoelasticity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
利用邊界元素法分析彈性力學問題且一併考慮熱效應對材料的影響時,則其邊界積分式中會產生一體積分項,目前最完善之解仍是將此體積分項完全轉換為面積分項。然而如果集中熱源出現在內部時,此熱源點將導致於分析時產生奇異性,造成數值運算上的困難。在本文中此問題藉由移除奇異點並使用靜偶合之方式得以解決,使其重新將體積分項轉換成面積分項,並加以驗証其結果是否正確。
在許多工程問題上,如主機版上之點焊問題、版金雷射切割…等問題皆屬於點熱源問題,在這些問題的數值模擬上,如果以有限元方式來模擬時會產生許多的問題。以ANSYS模擬為例,由於軟體沒有支援點熱源的設置,因此則必須使用非常精細的網格來模擬點熱源,除了造成網格的切割困難,計算時間也相對提高,這時如果利用邊界元素法來模擬時則可以克服這些問題。除了在建模速度上提升不少,計算時間也大幅的降低許多,針對此類的二維問題的分析使用邊界元素法分析為一項非常有力的工具。
當使用邊界元素法來求解工程問題之邊界值時,雖然於分析時間及效能上較有限元素法為快,但由於邊界元素的前處理邊界模型以及後處理器在目前本實驗室中仍是使用人工處理階段,於建模上及後處理分析上耗時甚多,而本論文中另針對邊界元素法套裝軟體,開發其相關圖形化界面以期使用者可以快速上手且進行分析。
When analyzing elasticity problem in conjunction with the material thermal effect, the boundary integral equation will generate one volume integral and as of now, the most complete solution is to convert the volume integral into surface integral. However, if the concentrated heat source emerges from within, then this heat source will create singularity and subsequently, difficulties in numerical calculations. In this article, the problem was solved by removing the singularity and applying the statically coupled method, reconvert the volume integral into the surface integral and verify the result.

Among many engineering problems, subjects like spot welding of motherboard, metal laser cutting, and many others can all be categorized under the spot heat source, which under the FEM; their data simulations can generate a lot of problems. Take ANSYS simulation as an example, the software is not equipped for supporting the spot heat source and must simulate them with very fine mesh, which in term created problems of difficulties associated with mesh cutting and increased calculation time. On the hand, problems can be resolved if BEM were to be used for simulation, much more efficient model building and greatly reduced calculation time. The BEM can also be a very powerful tool when comes to analysis for this kind of two dimensional problems.

When applying the boundary element method for solving the boundary value in engineering problems, though the analysis is much quicker and efficient, the preprocessing boundary model and the post processor are still manually processed in the lab. It is time consuming building the model and conducting the post processing analysis. In addition, this thesis had also developed a graphic interface for the boundary element method applications to facilitate users’ operation and analysis.
第1章 引言 1
第1.1節 前言 1
第1.2節 研究動機及目的 3
第1.3節 文獻回顧 6
第2章 基本理論 10
第2.1節 前言 10
第2.2節 域映射法 11
第2.3節 分域法 14
第2.4節 體積分之邊界積分轉換 16
第3章 二維異向性熱場之點熱源 28
第4章 二維異向性材點熱源之熱彈性力學 33
第5章 數值範例 46
第5.1節 ANSYS模型分析映射域理論應用 46
第5.2節 範例一:等向性材料圓盤 48
第5.3節 範例二:異向性材料圓盤 49
第5.4節 範例三:異向性材料平板 50
第6章 BEM前處理程式開發 65
第6.1節 程式開發目的 65
第6.2節 程式功能說明 66
第6.3節 模型建構法則 68
第6.4節 模型建構指令說明 69
第6.5節 點熱源設定 74
第6.6節 邊界條件設定 74
第6.7節 視窗功能表 79
第6.8節 材料性質及相關分析參數設定 80
第6.9節 材質資料庫 81
第6.10節 範例說明 82
第6.11節 BEM程式發展說明 91
第7章 結論 92
【1】Shiah, Y. C. and Tan, C. L., “Determination of Interior Point Stresses in Two Dimensional BEM Thermoelastic Analysis of Anisotropic Bodies” International Journal of Solids and Structures, Vol. 37, pp. 809-829, Nov. 1999.
【2】Clemens, D.L., Thermal Stress in an Anisotropic Elastic Half-Space, SIAM J. Appl. Math., Vol. 24, No. 3, pp. 332-337, May, 1973.
【3】Rahman, M. (2003), The axisymmetric contact problem of thermoelasticity in the presence of an internal heat source, International Journal of Engineering Science, Vol. 41, Issue 15, pp. 1899-1911, September.
【4】Qin, Qing-Hua (1999), Thermoelectroelastic Green’s function for thermal load inside or on the boundary of an elliptic inclusion, Mechanics of Materials, Vol. 31, Issue 10, pp. 611-626, October.
【5】Sherief, H. H. and Magahed, F. F., 1999. A two-dimensional thermoelasticity problem for a half space subjected to heat sources, International Journal of Solids and Structures 36 (9), 1369-1382.
【6】Gipson, G. S. and Camp, C. V., (1985), Effective use of Monte Carlo Quadrature for body force integrals occuring in integral form of elastostatics. In: Proc. 7th Int. Conf. On Boundary Elements, pp. 17-26.
【7】Camp, C. V. and Gipson, G. S., (1992), Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena (Springer-Verlag, Berlin).
【8】Lachat, J. C., 1975. Further development of the boundary integral technique for elastostatics, Ph.D. Thesis, Southampton University.
【9】Deb, A. and Banerjee, P. K. (1990), BEM for general anisotropic 2D elasticity using particular integrals, Commun. Appl. Num. Mech. 6:111-119.
【10】Nardini, D. and Brebbia C. A., (1982). A new approach to free vibration analysis using boundary elements. In: Boundary Element Methods in Engineering, Computational Mechanics Publications, Southampton and Springer-Verlag, Berlin and New York.
【11】Nowak, A. J., 1989. The Multiple Reciprocity Method of Solving Transient Heat Conduction Problems. In: Boundary Elements XI, Vol. 2, Computational Mechanics Publications, Southampton and Springer-Verlag, Berlin and New York.
【12】Nowak, A. J. and Brebbia, C. A., 1989. The Multiple Reciprocity Method: A New Approach for Transforming BEM Domain Integrals to the Boundary. Engineering Analysis 6 (3), 164-167.
【13】Rizzo, F. L.: Shippy, D. J., 1977. An advanced boundary integral equation method for three-dimensional thermoelasticity. Int. J. Numerical Methods Engng. 11: 1753-1768.
【14】Cheng, A.H.D., Chen C.S., Golberg, M.A. and Rashed, Y.F., 2001. BEM for thermoelasticity and elasticity with body forces – a revisit, Engng. Analysis Boundary Elements, Vol. 25, pp. 377-387.
【15】Shiah, Y. C. and Tan, C. L., 1999a. Exact boundary integral transformation of the thermoelastic domain integral in BEM for general 2D anisotropic elasticity, Computational Mechanics 23, 87-96.
【16】Shiah, Y. C. and Tan, C. L., “Exact Boundary Integral Transformation of the Thermoelastic Domain Integral in BEM for General 2D Anisotropic Elasticity”, Journal of Computational Mechanics, Vol. 23, pp. 87-96, June, 1998.
【17】Shiah, Y. C. and Tan, C. L., 1999b. Determination of interior point stresses in two-dimensional BEM thermoelastic analysis of anisotropic bodies, Int. J. Solids Struct 37, 809-829.
【18】Ming-Hsien Hsieh, Chien-Ching Ma, Analytical investigations for heat conduction problems in anisotropic thin-layer media with embedded heat sources, International Journal of Heat and Mass Transfer, Vol. 45, pp.4117-4132.2002
【19】Chien-Ching Ma, Shin-Wen Chang, Analytical exact solutions of heat conduction problems for anisotropic multi-layered media, International Journal of Heat and Mass Transfer, Vol. 47, pp. 1643-1655, 2004
【20】 , Study of transient heat conduction in 2.5D domains using the boundary element method, Engineering Analysis with Boundary Elements, Vol. 28, pp.593-606, 2004
【21】Banerjee, P.K. and Butterfield, R. (1981), Boundary Element Methods in Engineering Science, McGraw-Hill, Maidenhead.
【22】Cruse T.A,“Two Dimension BIE Fracture Mechanics Analysis.” in Recent Advances in Boundary Element Methods, C.A. Brebbia (Ed.), 167-184 (1978) (Pentech Press, London).
【23】Weaver, J,“Three-Dimensional Crack Analysis”,Int. J. Solids Struct., 13, 321-330 (1977).
【24】Snyder, M.D. and Cruse, T.A.,“Boundary Integral Equation Analysis of Cracked Anisotropic Plates”,Int. J. Fracture,11, 315-328 (1975).
【25】Sokolnikoff, I. S. “Mathematical Theory of Elasticity.” McGraw-Hill, New York (1956)
【26】Rizzo, F. J. and Shippy, D. J., Int. J. Numerical Method in Engrg, Vol.11, 1753, 1977.
【27】Danson, D.,“Linear isotropic elasticity with body forces.” In: progress in boundary element methods, Brebbia, C. A., Ed., Pentech Press, London, 1983.
【28】Deb, A. and Henry Jr., D. P. and Wilson, E. B., “Alternative BEM formulation for 2D and 3D thermoelasticity.” International Journal of Solids and Structures, Vol. 27, Issue 13, pp. 1721-1738, 1991.
【29】Cruse, T.A., “Mathematical Foundations of the Boundary Integral Equation Method in Solid Mechanics”, Report NO.AFOSR-TR-77-1002 ,1977.
【30】Zhang, J. J., Tan, C. L., and Afagh, F. F., “A general exact transformation of body-force volume integral in BEM for 2d anisotropic elasticity”, Computational Mechanics., Vol. 19, pp. 1-10, 1996b.
【31】Mera, N.S., Elliott, L., Ingham, D.B., and Lesnic, D., A Comparison of Boundary Element Method Formulations for Steady State Anisotropic Heat Conduction Problems, Engineering Analysis with Boundary Elements, Vol. 25, pp. 115-128, 2001.
【32】Segerlind, L.J., Applied Finite Element Analysis, John Wiley, New York, 1984.
【33】Li, W. H., Fluid Mechanics in Water Resources Engineering, Allyn and Bacon, Toronto, 1983.
【34】Bruce, E. and Lejeune, A. (1989), An Effective Solution of the Numerical Problems at Multi-Domain Points for Anisotropic Laplace Problems, In Advances in Boundary Elements Vol. 2, Proc. 11th Int. Conf. Boundary Element Methods, Cambridge, MA, USA, Ed. C.A. Brebbia and J.J. Connor, Spring-Verlag, Berlin, 1989.
【35】Zhang, J. J., Tan, C. L., and Afagh, F. F., An argument redefinition procedure in the BEM for 2D anisotropic elastostatics with body forces. In: Proc. Symposium on Mechanics in Design, Toronto, May 6-9, Meguid, S. A., Ed., Vol. 1, pp. 349-358, 1996a.
【36】Zhang, J. J., Tan, C. L., and Afagh, F. F., A general exact transformation of body-force volume integral in BEM for 2d anisotropic elasticity. Comput Mech. 19: 1-10, 1996b.
【37】Tan, C.L., Gao, Y.L. and Afagh, F.F., “Boundary Element Analysis of Interface Cracks Between Dissimilar Anisotropic Materials”, Int. J. Solids Structures, Vol. 29, pp. 3201-3220, 1992.
【38】夏育群、陳春來編著,林一吉編譯,“邊界元素法入門介紹”,高立圖書,中華民國94年5月, ISBN 986-412-158-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 【1】 王肇基,民國86年1月「行車事故之鑑定與分析」,律師雜誌1月號第208期,頁33-45。
2. 53.蕭丁訓,「台中港成為國際運籌中心之探討」,港灣報導,第59期,民國91年1月。
3. 53.蕭丁訓,「台中港成為國際運籌中心之探討」,港灣報導,第59期,民國91年1月。
4. 【1】 王肇基,民國86年1月「行車事故之鑑定與分析」,律師雜誌1月號第208期,頁33-45。
5. 54.謝明輝,「淺談開放兩岸直航後台中港扮演之角色」,中華民國海運月刊,第119期,民國91年7月。
6. 54.謝明輝,「淺談開放兩岸直航後台中港扮演之角色」,中華民國海運月刊,第119期,民國91年7月。
7. 54.謝明輝,「淺談開放兩岸直航後台中港扮演之角色」,中華民國海運月刊,第119期,民國91年7月。
8. 53.蕭丁訓,「台中港成為國際運籌中心之探討」,港灣報導,第59期,民國91年1月。
9. 【1】 王肇基,民國86年1月「行車事故之鑑定與分析」,律師雜誌1月號第208期,頁33-45。
10. 【29】 藍武王、戚培芳,民國85年,「中山高速公路肇事分析模式之構建-一般線性模式之應用」,運輸學刊,第九卷第二期,頁93-120。
11. 【29】 藍武王、戚培芳,民國85年,「中山高速公路肇事分析模式之構建-一般線性模式之應用」,運輸學刊,第九卷第二期,頁93-120。
12. 【29】 藍武王、戚培芳,民國85年,「中山高速公路肇事分析模式之構建-一般線性模式之應用」,運輸學刊,第九卷第二期,頁93-120。