|
【1】D. Stover and C. Funke, “Directions of the Development of Thermal Barrier Coatings in Energy Applications”, Journal of Materials Processing Technology,92-93, 1999, 195-202.Hall, London, 1996.78-86. 【2】Progress in Materials Science,“Mechanisms controlling the durability of thermal barrier coatings”, A.G. Evans ,D.R. Mumm , J.W. Hutchinson ,G.H. Meier , F.S Pettit, 2001.505-553. 【3】L. Pawlowski, “The Science and Engineering of Thermal Spray Coatings”, John Wiley & Sons, New York, Hall, London, 1996.78-86. 【4】J.T. DeMasi-Marcin and D.K. Gupta, “Protective Coatings in the Gas Turbine Engine”, Surface and Coatings Technology, 68-69, 1994, 1-9. 【5】謝式儒,“真空電漿噴銲技術應用在氣渦輪機葉片之表面處理”,機械工程月刊,中華民國83年3月號, 63-66. 【6】S. Nusier and G. Newaz, “Analysis of Interfacial Cracks in a TBC/Superalloy System under Thermal Loading”, Engineering Fracture Mechanics, Vol. 60, No. 5-6, pp. 577-581, 1998. 【7】T. C. Miller and R. Chona, “Finite Element Analysis of a Thermally Loaded Interface Crack in a Ceramic Coating”, Engineering Fracture Mechanics, Vol. 59, No. 2, pp. 203-214, 1998. 【8】R. E. Smelser and M. E. Gurtin, “On the J-integral for bimaterial bodies”, International Journal of Fracture, Vol. 13, pp. 382-384, 1977. 【9】J.H. Lau and Yi-Hsin Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies”, McGraw-Hill, pp. 123-125. 【10】Gipson, G. S. and Camp, C. V., “Effective use of Monte Carlo Quadrature for body force integrals occurring in integral form of elastostatics”, Proc. 7th Int. Conf. On Boundary Elements, pp. 17-26, 1985. 【11】Camp, C. V. and Gipson, G. S., Boundary element analysis of nonhomogeneious biharmonic phenomena, Springer-Verlag, Berlin, 1992. 【12】Lachat, J. C., “Further development of the boundary integral technique for elastoelastics”, Ph.D. Thesis, Southampton University, 1975. 【13】Deb, A. and Banerjee, P. K., “BEM for general anisotropic 2D elasticity using particular integrals”, Commun. Appl. Num. Meth., Vol. 6, pp. 111-119, 1990. 【14】Shiah, Y. C. and Tan, C. L., “Exact Boundary Integral Transformation of the Thermoelastic Domain Integral in BEM for General 2D Anisotropic Elasticity”, Journal of Computational Mechanics, Vol. 23, pp. 87-96, June 1998. 【15】Shiah, Y. C. and Tan, C. L., “Determination of Interior Point Stresses in Two Dimensional BEM Thermoelastic Analysis of Anisotropic Bodies” International Journal of Solids and Structures, Vol. 37, pp. 809-829, Nov. 1999. 【16】Segerlind, L. J., Applied Finite Element Analysis, John Wiley, New York, 1984. 【17】Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill, Maidenhead, 1977. 【18】Li, W. H., “ Fluid Mechanics in Water Resources Engineering, Allyn and Bacon, Toronto, 1983. 【19】Banerjee, P. K. and Butterfield, R., Boundary Element Methods in Engineering Science, McGraw-Hill, Maidenhead, 1981. 【20】Bruce, E. and Lejeune, A. “An effective solution of the numerical problems at mulit-domain points for anisotropic Laplace problems”, In Advances in Boundary Elements, Vol. 2, Proc. 11th Int. conf. Boundary Element Methods, Cambridge, MA, USA, ed. C. A. Brebbia and J. J. Connor, Springer-Verlag, Berlin, 1989. 【21】Tan, C. L., Gao, Y. L., and Afagh, F. F., “Boundary element analysis of interface cracks between dissimilar anisotropic materials”, Int. J. Solids Structures Vol. 24, pp. 3201-3220, 1992. 【22】Peter R. Johnston, David Elliott “A generalisation of Telles’ method for evaluating weakly singular boundary element integrals ” Journal of Computational and Applied Mathematics Vol.131, pp.223–241, 2001 【23】Ma, Hang and Kamiya Norio, “Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method”, Engineering Analysis with Boundary Elements, Vol. 26, pp.329-339, 2002. 【24】Johnston, Barbara M. and Johnston Peter R., “A modified non-linear transformation method for evaluating weakly singular boundary integrals”, Applied Mathematics and Computation, Vol. 148, pp. 519-535, 2004. 【25】Luo, J.F., Liu, Y.J., and Berger, E.J., ”Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method”, Computational Mechanics, Vol. 22, pp.404-412, 1998. 【26】Li, Z.-F. Grubb, D.T. Phoenix, S.L., ”Fiber interactions in the multi-fiber composite fragmentation test.” Composites Science and Technology Volume: 54, Issue: 3, 1995, pp. 251-266 【27】Shyang-ho Chi, Yen-Ling Chung, “Cracking in coating–substrate composites with multi-layered and FGM coatings”, Engineering Fracture Mechanics 70, 2003, 1227–1243 【28】Łukasz Figiel,Marcin Kaminski, “Mechanical and thermal fatigue delamination of curved layered composites”, Computers and Structures 81, 2003, 1865–1873 【29】M.Y. Quek, “Analysis of residual stresses in a single fibre–matrix composite”, International Journal of Adhesion & Adhesives 24, 2004, 379–388 【30】Cruse, T. A. “Boundary Element Analysis in Computational Fracture Mechanics. ” Dordrecht, Boston, Kluwer Academic Publishers, 1988. 【31】Krishnasamy, G.; Rizzo, F. J., Liu, Y. J. “Boundary integral equation for thin bodies.” International Journal for Numerical Methods in Engineering. Vol. 37, pp.107-121, 1944. 【32】Krishnasamy, G., Rizzo, F. J., Rudolphi, T. J. “hypersingular boundary integral equation: their occurrence, interpretation, regularization and computation.” In: Developments in Boundary Element Methods VII. Eds. P. K. Banerjee and et al., London, Elsevier Applied Science Publishers. Chapter 7, 1991 【33】Cruse, T. A. “BIE fracture mechanics analysis: 25 years of developments. ” Computational Mechanics 18: 1-11, 1996. 【34】Liu, Y. J., Rizzo, F. J. “Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral equation formulation.” Journal for the Acoustical Society America 102 (2)(Pt. 1, August): 926-932, 1997. 【35】M. H. Aliabadi, D. Martin. “Boundary element hyper-singular formulation for elastoplastic contact problems” International Journal for Numerical Methods in Engineering. Vol. 48, pp.995-1014, 2000. 【36】Peter R. Johnston , David Elliott “Transformations for evaluating singular boundary element integrals” Journal of Computational and Applied Mathematics Vol.146, pp.231–251, 2002. 【37】Yijun Liu, Hui Fan “On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes” Engineering Analysis with Boundary Elements Vol.25, pp.77-91, 2001. 【38】Yijun Liu, Hui Fan “Analysis of thin piezoelectric solids by the boundary element method ” Comput. Methods Appl. Mech. Engrg. Vol.191, pp.2297-2315, 2002. 【39】Barbara M. Johnston, Peter R. Johnston “A modified non-linear transformation method for evaluating weakly singular boundary integrals ” Applied Mathematics and Computation Vol.148, pp.519–535, 2004 【40】J.D. Richardson and T.A. Cruse “Weakly singular stress-BEM for 2D elastostatics ” Int. J. Numerical Methods in Engineering, Vol.45, pp.13-35, 1999. 【41】游錫揚,纖維複合材料,國彰出版社,中華民國81年11月初版 【42】Nye, J. F. Physical Properties of Crystals, Their Representation by Tensors and Matrices. Oxford: Clarendon. 1960. 【43】Arthur P. Boresi, Richard J. SCHMIDT,ADVANCED MECHANICS OF MATERIALS ,John wiley,sixth Edition pp.140, 2002.
|