跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林英徹
研究生(外文):Ying-Che Lin
論文名稱:超薄異向材料熱效應之邊界元素法方析
論文名稱(外文):BEM Analysis on the Thermal Effect for Ultra Thin Anisotropic Materials
指導教授:夏育群夏育群引用關係
指導教授(外文):Y. C. Shiah
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航空工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:186
中文關鍵詞:異向基材超薄熱效應邊界元素法
外文關鍵詞:Boundary element methodThermal EffectUltra ThinAnisotropic substrate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
1960年代以來,異向性架構的材料已經廣泛應用於許多工業,如航空、航天和軍事的工程運用。近年來所發展之高性能複材,常視不同之需要,以多種相異物性之材料- 如異向/異向或異向/等向之方式結合而成,其中最常見的例子便是疊層複材以及電子封裝中之覆晶組件。這些高性能之複材常常暴露在高温-低溫之循環操作環境下,其最常遇見之問題便是不同材料之界面處產生脫層現象。此原因乃是由於不同材料之熱膨脹係數不同之故。
本論文之目的在於以邊界元素法分析,研究此等多重異向複材在劇烈溫差下其相接層面之熱應力。藉此,得以更進一步分析並了解:如果界面產生脫層現象時裂紋之強度因子與相接材料物性之關聯性。以往邊界元素法在分析異向性材料之熱應力問題時一直受挫,問題之癥結在於熱效應本身在邊界積分式中為一體積分。為此,域內就必須做全域分割,如此便破壞了邊界元素法祗需在邊界分割之特性。此項問題直到最近才由Shiah和Tan【10】經由連續模式處理問題成功的將體積分轉換成邊界積分才得以解決。此外,將更進一步研究在微米甚至奈米區間時多種異向複材受熱時其熱應力問題。
Since the 1960’s, materials with anisotropic properties have been extensively used in numerous commercial, aerospace, and military engineering applications to achieve their ultimate performance. For various purposes, composites are often constructed by combining two or more anisotropic materials such as a combination of anisotropic/anisotropic or anisotropic/isotropic materials. The common examples in industries include layered composites and the assembly of flip chips in electronic packaging. The multiply adjoined composites are often subjected to cycles of ultimate heating and cooling. Under such operation environment, the most serious problem that the composites may encounter is the delamination between interfaces. This is mainly due to the mismatch of thermal expansion coefficients of the adjoined anisotropic materials.
The goal of this project is to analyze the interfacial thermal stresses between dissimilar anisotropic materials that are subjected to severe temperature change. Through this investigation, we may further study the relationship between the stress intensity factors (SIFs) of a crack initialing de-bonding and the constituent materials’ properties. In the past, the boundary element method (BEM) was not successful in analyzing thermoelastic stresses in anisotropic materials. This is because, in the boundary integral equation, the thermal effect reveals itself as an extra volume integral that requires domain discretisation and therefore destroys BEM’s notion as a boundary solution technique. This problem was not resolved until recently when the authors (Shiah, Y. C. and Tan, C. L., 1999) successfully transformed the extra volume integral into a series of boundary ones. In addition, analysis anisotropic materials of two-dimensional thin structures(from mirco- to nano-scales) using boundary element method.
誌謝................................................................i
中文摘要 ...........................................................ii
英文摘要............................................................iii
目錄................................................................iv
圖目錄..............................................................vii
表目錄..............................................................xi
第一章 導論........................................................1
1.1 前言............................................................1
1.2 研究動機........................................................2
1.3 文獻回顧........................................................4
1.4 研究流程與方法..................................................7
第二章 研究理論回顧................................................12
2.1 含異向材料之疊層結構並含層間裂紋之熱傳問題......................12
2.1.1 不同異相材料接合處但無裂紋之界面..............................15
2.1.2 不同異相材料接合處為裂紋之界面................................16
2.2 異向材料之疊層結構熱應力與對應之裂紋強度因子問題................17
2.3 超薄疊層結構之近乎奇異積分問題..................................19
2.3.1 超薄等向結構之近乎奇異積分問題................................20
2.3.2 超薄異向性結構之近乎奇異積分問題..............................23
第三章 分部積分轉換................................................27
3.1 基礎函數 分部積分轉換...........................................27
3.1.1 二階非線性元素之積分轉換推導..................................28
3.1.2 二階線性元素之積分轉換推導....................................39
3.2 基礎函數 分部積分轉換...........................................49
3.2.1 二階非線性元素之積分轉換推導..................................49
3.2.2 二階線性元素之積分轉換推導....................................56
3.3 基礎函數 分部積分轉換...........................................65
3.3.1 二階非線性元素之積分轉換推導..................................66
3.3.2 二階線性元素之積分轉換推導....................................74
3.4 基礎函數 分部積分轉換...........................................82
3.4.1 二階非線性元素之積分轉換推導..................................84
3.4.2 二階線性元素之積分轉換推導....................................98
第四章 驗證分部積分轉換適用與正確性................................110
4.1 非零Jacobian 座標轉換之證明.....................................110
4.2 被積函數之近乎奇異性探討........................................114
4.3 數值驗證........................................................115
4.3.1 二階非線性元素數值驗證........................................116
4.3.2 二階線性元素數值驗證..........................................118
4.3.3 二階非線性元素與線性元素數值比對..............................119
第五章 數值範例....................................................147
5.1 範例1...........................................................148
5.2 範例2...........................................................150
5.3 範例3...........................................................152
5.4 範例4...........................................................153
第六章 結論與展望..................................................179
參考文獻............................................................182
附錄A...............................................................186
【1】D. Stover and C. Funke, “Directions of the Development of Thermal Barrier
Coatings in Energy Applications”, Journal of Materials Processing Technology,92-93, 1999, 195-202.Hall, London, 1996.78-86.
【2】Progress in Materials Science,“Mechanisms controlling the durability of thermal barrier coatings”, A.G. Evans ,D.R. Mumm , J.W. Hutchinson ,G.H. Meier , F.S Pettit, 2001.505-553.
【3】L. Pawlowski, “The Science and Engineering of Thermal Spray Coatings”, John Wiley & Sons, New York, Hall, London, 1996.78-86.
【4】J.T. DeMasi-Marcin and D.K. Gupta, “Protective Coatings in the Gas Turbine Engine”, Surface and Coatings Technology, 68-69, 1994, 1-9.
【5】謝式儒,“真空電漿噴銲技術應用在氣渦輪機葉片之表面處理”,機械工程月刊,中華民國83年3月號, 63-66.
【6】S. Nusier and G. Newaz, “Analysis of Interfacial Cracks in a TBC/Superalloy System under Thermal Loading”, Engineering Fracture Mechanics, Vol. 60, No. 5-6, pp. 577-581, 1998.
【7】T. C. Miller and R. Chona, “Finite Element Analysis of a Thermally Loaded Interface Crack in a Ceramic Coating”, Engineering Fracture Mechanics, Vol. 59, No. 2, pp. 203-214, 1998.
【8】R. E. Smelser and M. E. Gurtin, “On the J-integral for bimaterial bodies”, International Journal of Fracture, Vol. 13, pp. 382-384, 1977.
【9】J.H. Lau and Yi-Hsin Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies”, McGraw-Hill, pp. 123-125.
【10】Gipson, G. S. and Camp, C. V., “Effective use of Monte Carlo Quadrature for body force integrals occurring in integral form of elastostatics”, Proc. 7th Int. Conf. On Boundary Elements, pp. 17-26, 1985.
【11】Camp, C. V. and Gipson, G. S., Boundary element analysis of nonhomogeneious biharmonic phenomena, Springer-Verlag, Berlin, 1992.
【12】Lachat, J. C., “Further development of the boundary integral technique for elastoelastics”, Ph.D. Thesis, Southampton University, 1975.
【13】Deb, A. and Banerjee, P. K., “BEM for general anisotropic 2D elasticity using particular integrals”, Commun. Appl. Num. Meth., Vol. 6, pp. 111-119, 1990.
【14】Shiah, Y. C. and Tan, C. L., “Exact Boundary Integral Transformation of the Thermoelastic Domain Integral in BEM for General 2D Anisotropic Elasticity”, Journal of Computational Mechanics, Vol. 23, pp. 87-96, June 1998.
【15】Shiah, Y. C. and Tan, C. L., “Determination of Interior Point Stresses in Two Dimensional BEM Thermoelastic Analysis of Anisotropic Bodies” International Journal of Solids and Structures, Vol. 37, pp. 809-829, Nov. 1999.
【16】Segerlind, L. J., Applied Finite Element Analysis, John Wiley, New York, 1984.
【17】Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill, Maidenhead, 1977.
【18】Li, W. H., “ Fluid Mechanics in Water Resources Engineering, Allyn and Bacon, Toronto, 1983.
【19】Banerjee, P. K. and Butterfield, R., Boundary Element Methods in Engineering Science, McGraw-Hill, Maidenhead, 1981.
【20】Bruce, E. and Lejeune, A. “An effective solution of the numerical problems at mulit-domain points for anisotropic Laplace problems”, In Advances in Boundary Elements, Vol. 2, Proc. 11th Int. conf. Boundary Element Methods, Cambridge, MA, USA, ed. C. A. Brebbia and J. J. Connor, Springer-Verlag, Berlin, 1989.
【21】Tan, C. L., Gao, Y. L., and Afagh, F. F., “Boundary element analysis of interface cracks between dissimilar anisotropic materials”, Int. J. Solids Structures Vol. 24, pp. 3201-3220, 1992.
【22】Peter R. Johnston, David Elliott “A generalisation of Telles’ method for evaluating weakly singular boundary element integrals ” Journal of Computational and Applied Mathematics Vol.131, pp.223–241, 2001
【23】Ma, Hang and Kamiya Norio, “Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method”, Engineering Analysis with Boundary Elements, Vol. 26, pp.329-339, 2002.
【24】Johnston, Barbara M. and Johnston Peter R., “A modified non-linear transformation method for evaluating weakly singular boundary integrals”, Applied Mathematics and Computation, Vol. 148, pp. 519-535, 2004.
【25】Luo, J.F., Liu, Y.J., and Berger, E.J., ”Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method”, Computational Mechanics, Vol. 22, pp.404-412, 1998.
【26】Li, Z.-F. Grubb, D.T. Phoenix, S.L., ”Fiber interactions in the multi-fiber composite fragmentation test.” Composites Science and Technology Volume: 54, Issue: 3, 1995, pp. 251-266
【27】Shyang-ho Chi, Yen-Ling Chung, “Cracking in coating–substrate composites with multi-layered and FGM coatings”, Engineering Fracture Mechanics 70, 2003, 1227–1243
【28】Łukasz Figiel,Marcin Kaminski, “Mechanical and thermal fatigue delamination of curved layered composites”, Computers and Structures 81, 2003, 1865–1873
【29】M.Y. Quek, “Analysis of residual stresses in a single fibre–matrix composite”, International Journal of Adhesion & Adhesives 24, 2004, 379–388
【30】Cruse, T. A. “Boundary Element Analysis in Computational Fracture Mechanics. ” Dordrecht, Boston, Kluwer Academic Publishers, 1988.
【31】Krishnasamy, G.; Rizzo, F. J., Liu, Y. J. “Boundary integral equation for thin bodies.” International Journal for Numerical Methods in Engineering. Vol. 37, pp.107-121, 1944.
【32】Krishnasamy, G., Rizzo, F. J., Rudolphi, T. J. “hypersingular boundary integral equation: their occurrence, interpretation, regularization and computation.” In: Developments in Boundary Element Methods VII. Eds. P. K. Banerjee and et al., London, Elsevier Applied Science Publishers. Chapter 7, 1991
【33】Cruse, T. A. “BIE fracture mechanics analysis: 25 years of developments. ” Computational Mechanics 18: 1-11, 1996.
【34】Liu, Y. J., Rizzo, F. J. “Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral equation formulation.” Journal for the Acoustical Society America 102 (2)(Pt. 1, August): 926-932, 1997.
【35】M. H. Aliabadi, D. Martin. “Boundary element hyper-singular formulation for elastoplastic contact problems” International Journal for Numerical Methods in Engineering. Vol. 48, pp.995-1014, 2000.
【36】Peter R. Johnston , David Elliott “Transformations for evaluating singular boundary element integrals” Journal of Computational and Applied Mathematics Vol.146, pp.231–251, 2002.
【37】Yijun Liu, Hui Fan “On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes” Engineering Analysis with Boundary Elements Vol.25, pp.77-91, 2001.
【38】Yijun Liu, Hui Fan “Analysis of thin piezoelectric solids by the boundary element method ” Comput. Methods Appl. Mech. Engrg. Vol.191, pp.2297-2315, 2002.
【39】Barbara M. Johnston, Peter R. Johnston “A modified non-linear transformation method for evaluating weakly singular boundary integrals ” Applied Mathematics and Computation Vol.148, pp.519–535, 2004
【40】J.D. Richardson and T.A. Cruse “Weakly singular stress-BEM for 2D elastostatics ” Int. J. Numerical Methods in Engineering, Vol.45, pp.13-35, 1999.
【41】游錫揚,纖維複合材料,國彰出版社,中華民國81年11月初版
【42】Nye, J. F. Physical Properties of Crystals, Their Representation by Tensors and Matrices. Oxford: Clarendon. 1960.
【43】Arthur P. Boresi, Richard J. SCHMIDT,ADVANCED MECHANICS OF MATERIALS ,John wiley,sixth Edition pp.140, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張永賢 (1994)。探討太極拳對中老年人的運動效益。國術研究,3(1), 57-64。
2. 賴金鑫、藍青 (1994)。初學太極拳者心肺功能之追蹤研究。國術研究,3(1),19-36。
3. 黃國禎、郭博昭、陳俊忠 (1998)。長期從事太極拳運動對男性老年人安靜心率變異性之影響。體育學報,7,109-118。
4. 陳桂敏、劉慈慧 (2004)。太極拳運動於老年族群之應用成效。長期照護雜誌,8(2),223-235。
5. 蔡錦雀、陳俊忠 (1993)。中老年男性從事太極拳運動之心血管反應。國術研究,2(1),63-72。
6. 譚靜梅 (1997)。太極拳的起源初探。國立體育學院論叢,8(1),119-129。
7. 藍青、賴金鑫、連倚南 (1993)。太極拳訓練對初學者心肺功能之促進效果。國術研究,2(1),53-62。
8. 藍青 (2000b)。老祖宗的養生法 (下):太極拳的健身效果及臨床應用。健康世界,172,75-78。
9. 藍青 (2000a)。老祖宗的養生法:太極拳 (上)。健康世界,171,32-38。
10. 戴旭志、蕭朝山 (2001)。傳統太極拳應用在休閒運動及醫療發展過程得潛在因素。大專體育,53,113-120。
11. 賴惠玲、謝佩珊、謝美玲、王淑芬、林金蘭、宋美惠、卓如玉 (2004)。團體有氧運動對中老年人生理心理指標的影響。慈濟護理雜誌,3(2),50-58。
12. 許志耀 (2002) 。太極拳呼吸法的探討。中華體育,16(3),45-50。
13. 劉照金、莊哲仁 (2002)。太極拳運動對老人保健價值研究之回顧。萬能學報,24,361-370。
14. 張嚴仁、王俊明 (1994)。太極拳訓練對A型行為運動選手情緒反應、焦慮知覺及A型行為的影響。國術研究,3(1),37-48。
15. 張嚴仁 (2000)。不同拳齡太極拳練拳者之健康體能評估。弘光學報,37,67-73。