跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林進陽
研究生(外文):Chin-Yang Lin
論文名稱:靜電驅動微扭轉鏡致動器之彎曲彈簧懸臂設計
論文名稱(外文):The Serpentine Spring Design for Electrostatic Torsional Micromirror Actuator
指導教授:方俊方俊引用關係
指導教授(外文):Jiunn Fang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航空工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:117
中文關鍵詞:靜電微機電微扭轉鏡
外文關鍵詞:micromirrorPull-InTorsional MicromirrorelectrostaticMEMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:474
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,靜電驅動微扭轉鏡致動器是微機電系統領域工業應用及量產的主要產品之一,由於產品要求必須光源投射精準、鏡面高反射率、耗電量低、操作頻率寬廣、疲勞壽命長及易於大量生產製造等。在這些訴求中,耗電量低除了可以節省能源,亦可減少因電能而產生的熱量,進而降低結構的熱應力並延長產品的使用壽命,所以是此類研究的主要課題。其中之一是以彎曲彈簧替代傳統靜電驅動微扭轉鏡致動器之懸臂樑,彎曲彈簧原應用於微機電結構變形時的能量儲存,由於其扭轉剛性低,所以擔任起扭轉鏡面之懸臂樑。
但是承受扭轉負載之彎曲彈簧屬於三維結構,不易由材料力學等理論推導其變形,因此本文主要是以ANSYS(電腦輔助工程分析軟體)預測彎曲彈簧懸臂樑之靜電驅動微扭轉鏡致動器的臨界電壓,並測試不同幾何形狀下之扭轉剛性及找尋最佳化之尺寸。然而,由於彎曲彈簧抗彎性較差,鏡面受靜電吸引時亦會產生垂直下沉的缺點。本文對此,除提供設計者於不同彎曲彈簧幾何形狀下之電壓-扭轉角相關的資料外,亦提出於鏡面下以簡易的支撐牆來改善此一問題。
In recent years, Electrostatic Torsional-Micromirror Actuator is one of the major industrial applications and mass productions of the Micro-Electro-Mechanical Systems (MEMS). These products are requested to have the functions of precise light projection, high reflection rate, low power consumption, wide bandwidth, long fatigue lift, and can easily be manufactured on the mass production lines. In these issues, low power consumption can not only save the electrical power but also decrease the induced heat. Moreover, it will avoid the high thermal stress generated in the structures and prolong the products life. Therefore, it becomes the major research topic in this field. Right now, researchs show that lower driving voltage can be achieved by using the serpentine spring to replace the cantilever beam for weaker torsional rigidity of the serpentine spring.
The geometries of the torsional serpentine springs are three-dimensional, and hard to derive the displacement functions from basic theories of the mechanics of materials. Therefore, we apply ANSYS (CAE Software) to predict the pull-in voltages, analyze the torsional rigidities and search the optimal shapes of the structures. However, when applying driving voltages to these micromirrors, they will suffer the vertical crash situation as a side effect for poor bending performance of the serpentine springs. Thus, in this research, we offer the voltage-torsional angle relations data to the designers, and also point out a simple support wall to improve the vertical crash problem.
封面............................................i
誌謝...........................................ii
摘要..........................................iii
Abstract.......................................iv
目錄...........................................vi
圖目錄.......................................viii
表目錄........................................xii
附表目錄.....................................xiii
符號說明......................................xiv
第1章 緒論.....................................1
第1.1節 前言...................................1
第1.2節 研究目的與動機.........................2
第1.3節 文獻回顧...............................5
第1.4節 組織與章節.............................7
第2章 製程簡介與理論分析.......................9
第2.1節 微細加工製造簡介.......................9
第2.2節 靜電驅動微扭轉鏡製程(Fabrication)...14
第2.3節 微扭轉鏡電容之靜電吸引力矩............17
第2.4節 微扭轉鏡懸臂樑之回復力矩[29-32].......21
第2.5節 靜電驅動微扭轉鏡致動器之理論動態分析..34
第3章 ANSYS數值模擬...........................41
第3.1節 ANSYS電腦輔助工程軟體簡介.............41
第3.2節 靜電驅動微扭轉鏡致動器之ANSYS靜態分析.42
第3.3節 靜電驅動微扭轉鏡致動器之ANSYS動態分析.52
第4章 扭轉鏡面之彎曲彈簧懸臂最佳化............56
第4.1節 彎曲彈簧簡介..........................56
第4.2節 彎曲彈簧扭轉角之ANSYS分析步驟.........59
第4.3節 彎曲彈簧扭轉角之ANSYS分析結果.........60
第5章 彎曲彈簧微扭轉鏡模擬結果與討論..........64
第5.1節 各式扭轉臂之微扭轉鏡與臨界電壓之關係..64
第5.2節 各式扭轉臂之微扭轉鏡受負載後垂直下沉之狀況...67
第5.3節 各式扭轉臂之微扭轉鏡與von Mises等效應力之關係...69
第5.4節 彎曲彈簧微扭轉鏡之自然頻率分析結果....90
第6章 簡支牆式防降彎曲彈簧微扭轉鏡............94
第6.1節 防降彎曲彈簧微扭轉鏡..................94
第6.2節 簡支牆防降彎曲彈簧微扭轉鏡及ANSYS分析.95
第7章 結論與未來工作.........................101
參考文獻......................................104
附錄..........................................110
附錄1 多晶矽薄膜材料性質[33].................111
附錄2 微扭轉鏡扭轉角的實驗值與理論值.........113
附錄3 彎曲彈簧測試群組結果資料...............115
[1] Tummala, R. R., Fundamentals of Microsystems Packaging, The McGraw-Hill Companies, Inc., 2002.
[2] Senturia, S. D., Microsystem Design, Kluwer Academic, 2001.
[3] D. L. Dickensheets, and G. S. Kino, “Silicon-Micromachined Scanning Confocal Optical Microscope,” IEEE Journal of Microelectromechanical Systems, vol. 7, no. 1, March, 1998, pp. 38-47.
[4] H. Toshiyoshi and H. Fujita, “An Eelectrostatically Operated Torsion Mirror for Optical Switching Device,” in Proc. 8th Int. Conf. Solid-State Sensors and Actuators (Transducers’95), Stockholm, Sweden, June, 1995, pp. 25-29.
[5] Jaecklin, V. P., Linder, C. and de Rooij, N. F., “Line-addressable Torsional Micromirrors for Light Modulator Arrays”, Sensors and Acturators A, 41-42, 1994, pp. 324-329.
[6] 劉鎮鍠, 陳榮順, 陳世洲及林孟儒, ”微扭轉致動器之靜電驅動力分析”, 中國機械工程學會第十五屆學術研討會, 台南市, 新興工程技術論文集, 1998, pp. 77-83.
[7] http://www.coventor.com/optical-mems/, CoventorWare, 4000 CentreGreen Way, Suite 190, Cary, NC 27513.
[8] Zhang, X. M., Chau, F. S., Quan, C., Lam, Y. L. and Liu, A. Q., “A Study of the Static Characteristics of a Torsional Micromirror”, Sensors and Actuators A, Vol. 90, 2001, pp. 73-81.
[9] Hornbeck, L. J., “128*128 Deformable Mirror Device”, IEEE Trans. Electron Devices ED-30, 1983, pp. 539-545.
[10] Muller, R. S. and Lau, K. Y., “Surface-Micromachined Microoptical Elements and Systems”, Proceedings of the IEEE Microeletromechanical Systems Workshop, MEMS’98, German, 25-28, January, 1998, pp. 1705-1720.
[11] Lin, T.-H., “Implementation and Characterization of a Flexure-Beam Micromechanical Spatial Light Modulator”, Opt. Eng., Vol. 33, 1994, 3643-3648.
[12] Peterson, K. E., “Silicon Torsional Scanning Mirror”, IBM J. Res. Dev., Vol. 24 (5), 1980, pp. 631-637.
[13] Kurth, S., Hahn, R., Kaufmann, C., Kehr, K., Mehner, J., Wollmann, V., Dotzel, W. and Gessner, T., “Silicon Mirrors and Micromirror Arrays for Spatial Laser Beam Modulation”,Sensors and Actuators A, Vol. 66, 1998, pp. 76-82.
[14] Toshiyoshi, H. and Fujita, H., “Electrostatic Microtorsion Mirrors for an Optical Switch Matrix”, J. Microelectromechanical Systems, Vol. 5 (4), 1996, pp. 231-237.
[15] Jaecklin, V. P., Linder, C., Brugger, J. and de Rooij, N. F., “Mechanical and Optical Properties of Surface Micromachined Torsional Mirrors in Silicon, Polysilicon and Aluminum”, Sensors and Actuators A, 43, 1994, pp. 269-275.
[16] Hornbeck, L. J., “Current Status of the Digital Micromirror Device (DMD) for Projection Television Applications”, Int. Electron Devices Tech. Dig., Dallas, TX, December, 1993, pp. 381-384.
[17] Renther, H. M., Weinmann, M., Fischer, M., von Münch, W. and Assmus, F., “Modelling Electrostatically Deflectable Microstructures and Air Damping Effects”, Sensors Mater., Vol. 8, 1996, pp. 251-269.
[18] Fischer, M., Giousouf, M., Schaepperle, J., Eichner, D., Weinmann, M., von Münch, W. and Assmus, F., “Electrostatically Deflectable Polysilicon Micromirrors – Dynamic Behaviour and Comparison with the Results from FEM Modelling with ANSYS”, Sensors and Actuators A, Vol. 67, 1998, pp. 89-95.
[19] Kiang, M. H., Solgarrd, O., Muller, R. S. and Lau, K. Y., “Surface-Micromachined Electrostatic-Comb Driven Scanning Micromirrors for Barcode Scanners”, IEEE MEMS Workshop, San Diego, CA, February, 1996, pp. 192-197.
[20] Lin, H.-Y., and Fang, W., “A Rib-Reinforced Micro-Torsional-Mirror Driven by Electrostatic Torque Generators,” Sensors and Actuators A, Vol. 105, 2003, pp. 1-9.
[21] Guo, J.-G. and Zhao, Y.-P., “Influence of van der Waals and Casimir Forces on Electrostatic Torsional Actuators”, J. of Microelectromechanical Systems, Vol. 13, Dec., 2004, pp. 1027-1035..
[22] Fischer, M., Graef, H. and von Münch, W., “Electrostatically Defectable Polysilicon Torsional Mirrors”, Sensors and Actuators A, Vol. 44, 1994, pp. 83-89.
[23] Griffin, W. S., Richardson, H. H. and Yamranami, S., “A Study of Fluid Squeeze-Film Damping”, J. Basic Eng., Trans. ASME, June, 1996, pp. 451-456.
[24] 施敏, 半導體元件物理與製作技術, 國立交通大學, 2002.
[25] 莊達人, VLSI 製造技術, 高立圖書公司, 2005.
[26] 鄒宏基, 陳智豪及程龍, 基礎電路學(上), 儒林圖書公司, 1998.
[27] 程海東, ”從材料科技談中部科學園區的發展”, 2005 中小企業展望暨創新育成中心中科廠商產學合作研討會, 2004年10月9日, 東海大學管理學院中區研訓中心.
[28] Gradshteyn, S. and Ryzhik, I. M., Table of Integrals, Series and Products, Academic Press, 1980.
[29] Roark, R. J. and Young, W. C., Formulas for Stress and Strain, McGraw Hill Int. Edns., Singapore, 5th ed., 1976.
[30] Sun, C. T., Mechanics of Aircraft Structures, John Wiley & Sons, Inc., 1998.
[31] Wang, Chi-The, Applied Elasticity.
[32] Ugural, A. C. and Fenster, S. K., Advanced Strength and Applied Elasticity, Prentice Hall, 4th ed., 2003.
[33] http://www.memsnet.org/material/, Polysilicon Film, MEMS and Nanotechnology Clearinghouse.
[34] Craig, R. R., Jr., Structural Dynamics - An Introduction to Computer Methods, John Wily & Sons, Inc., 1981.
[35] Starr, J., “Squeeze-Film Damping in Solid-State Accelerometers”, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 4-7 June, 1990, 99. 44-47.
[36] P F. Van Kessel, L. J. Hornbeck, R. E. Meier and M. R. Douglass, “A MEMS-Based Projection Display, ” Proceedings of the IEEE, vol. 86 no. 8, August , 1998, pp. 1687-1704.
[37] H. Toshiyoshi, W. Piyawattanametha, C. T. Chan, and M. C. Wu, “Linearization of Electrostatically Actuated Surface Micromachined 2-D Optical Scanner,” IEEE Journal of Microelectromechanical Systems, vol. 10, no. 2, June, 2001, pp. 205-213.
[38] 林清安, Pro/Engineer Wildfire 2.0 - 零件設計基礎篇(上), 基礎篇(下), 進階篇(上), 進階篇(下), 零件組立與產品設計, 模具設計, 板金設計, 知城數位科技股份有限公司.
[39] Chapter 4-ANSYS Multi-field (TM) Solver, Coupled-Field Analysis Guide, ANSYS Release 8.0 Documentation.
[40] Curtis, H. D., Fundamental of Aircraft Structural Analysis, Richard D. Iewin, Inc., 1997.
[41] Chen, K.-S. and Ou, K.-S., “Equivalent Strengths for Reliability Assessment of MEMS Structures”, Sensors and Actuators A, Vol. 112, 2004, pp. 163-174.
[42] http://www.sfu.ca/adm/, Automated Design for Multi-User MEMS Processes (MUMPs), Simon Fraser University, Canada.
[43] http://www.sfu.ca/immr/gallery/, Institute of Micromachine and Microfabrication Research, Simon Fraser University.
[44] Walker, J. A., “The Future of MEMS in Telecommunications Networks,” J. of Micro-Mechanics and Microengineering, Vol. 10, No. 3, R1-7, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top