|
[1]H.-L. Huang and S.-Y. Ho, "Mesh Optimization for Surface Approximation Using an Efficient Coarse-to-Fine Evolutionary Algorithm," Pattern Recognition, vol. 36, pp. 848-864, 2003. [2]S.-Y. Ho and H.-L. Huang, "Facial Modeling from an Uncalibrated Face Image Using an Intelligent Genetic Algorithm," Proceedings of National Computer Symposium, pp. B415-B422, 1999. [3]S.-Y. Ho and H.-L. Huang, "Facial Modeling from an Uncalibrated Face Image Using Flexible Generic Parameterized Facial Models," IEEE Trans. Systems, Man, and Cybemetics-PartB, vol. 31, pp. 706-719, 2001. [4]C. Li, Y. H. Yang, S. Dudoit, and H. Chipman, Statistical Analysis of Gene Expression Microarray Data. Washington, D.C.: A CRC Press Company, 2003. [5]W. J. Fu, E. R. Dougherty, B. Mallick, and R. J. Carroll, "How Many Samples Are Needed to Build A Classifier: A General Sequential Approach," Bioinformatics Advance Access, 2004. [6]D.-T. Chen, S.-H. Lin, and S.-j. Soong, "Gene selection for oligonucleotide array: an approach using PM probe level data," Bioinformatics Advance Access, 2004. [7]Li, L., Weinberg, R. C., Darden, T. A., Pedersen, and L. G., "Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method," BIOINFORMATICS, vol. 17, pp. 1131-1142, 2001. [8]K. Bae and B. K. Mallick, "Gene selection using a two-level hierarchical Bayesian model," Bioinformatics Advance Access, 2004. [9]C. H. Ooi and P. Tan, "Genetic algorithms applied to multi-class prediction for the analysis of gene expression data," BIOINFORMATICS, vol. 19, pp. 37-44, 2003. [10]Y. Xia, H. Tong, Li, W. K., a. Zhu, and L. X., "An adaptive estimation of dimension reduction space," Journal of The Royal Statistical Society Series B, vol. 64, pp. 364-410, 2002. [11]Y. Su, T. M. Murali, V. Pavlovic, M. Schaffer, and S. Kasif, "RankGene: identification of diagnostic genes based on expression data," BIOINFORMATICS, vol. 19, pp. 1578-1579, 2003. [12]R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Second ed: Wiley, 2001. [13]M. James, Classification Algorithm. New York: Wiley, 1985. [14]Z. R. Yang, "Mining gene expression data based on template theory," Bioinformatics Advance Access, 2004. [15]J. B. Tobler, M. N. Molla, E. F. Nuwaysir, R. D. Green, and J. W. Shavlik, "Evaluating machine learning approaches for aiding probe selection for gene-expression arrays," BIOINFORMATICS, vol. 18, pp. S164-S171, 2002. [16]Y. Chen and D. Xu, "Understanding protein dispensability through machine-learning analysis of high-throughput data," Bioinformatics Advance Access, 2004. [17]R. Linder, D. Dew, H. Sudhoff, D. Theegarten, K. Remberger, S. J. Poppl, and M. Wagner, "The ''subsequent artificial neural network'' (SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses," Bioinformatics Advance Access, 2004. [18]T. Li, C. Zhang, and M. Ogihara, "A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression," BIOINFORMATICS, vol. 20, pp. 2429?437, 2004. [19]A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, "A Comprehensive Evaluation of Multicategory Classification Methods for Microarray Gene Expression Cancer Diagnosis," Bioinformatics Advance Access, 2004. [20]T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler, "Support vector machine classification and validation of cancer tissue samples using microarray expression data," BIOINFORMATICS, vol. 16, pp. 906-914, 2000. [21]Y. Lee and C.-K. Lee, "Classification of multiple cancer types by multicategory support vector machines using gene expression data," BIOINFORMATICS, vol. 19, pp. 1132-1139, 2003. [22]J. Qin, D. P. Lewis, and W. S. Noble, "Kernel hierarchical gene clustering from microarray expression data," BIOINFORMATICS, vol. 19, pp. 2097-2104, 2003. [23]Y. Wang, F. Makedon, J. Ford, and J. Pearlman, "HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data," Bioinformatics Advance Access, 2004. [24]O. Abul, R. Alhajj, F. Polat, and K. Barker, "Finding differentially expressed genes: pattern generation using Q-values," Bioinformatics Advance Access, 2004. [25]D. J. Bakewell and E. Wit, "Weighted analysis of microarray gene expression using maximum likelihood," Bioinformatics Advance Access, 2004. [26]A.-L. Boulesteix, G. Tutz, and K. Strimmer, "A CART-based approach to discover emerging patterns in microarray data," BIOINFORMATICS, vol. 19, pp. 2465-2472, 2003. [27]M. J. L. d. Hoon, S. Imoto, and S. Miyano, "Statistical analysis of a small set of time-ordered gene expression data using linear splines," BIOINFORMATICS, vol. 18, pp. 1477-1485, 2002. [28]E. Wit and J. McClure, "Statistical adjustment of signal censoring in gene expression experiments," BIOINFORMATICS, vol. 19, pp. 1055-1060, 2003. [29]S.-Y. Ho, L.-S. Shu, and H.-M. Chen, "Intelligent genetic algorithm with a new intelligent crossover using orthogonal arrays," Proceedings of 1999 Genetic and Evolutionary Computation Conference, pp. 289-296, 1999. [30]G. Taguch and S. Konishi, Orthogonal Arrays and Linear Graphs. MI: American Supplier Institute, 1987. [31]D. E. Goldberg, Genetic Algorithms in search, Optimization and Machine Learning: Addison-Wesley Publishing Company, 1989. [32]D. T. Ross, U. Scherf, M. B. Eisen, C. M. Perou, C. Rees, P. Spellman, V. Iyer, S. S. Jeffery, M. Van de Rijn, and M. Waltham, "Systematic Variation in Gene Expression Patterns in Human Cancer Cell Lines," Nature Genetics, vol. 24, pp. 227-235, 2000. [33]S. Rammaswamy and e. al., "Multiclass cancer diagnosis using tumor gene expression signatures," Proc Natl Acad Sci U S A, 2001. [34]Su and A.I., "Chemosensitivity prediction by transcriptional profiling," Proc Natl Acad Sci U S A, vol. 98, pp. 10787-10792, 2001. [35]Pomeroy and e. al., "Prediction of central nervous system embryonal tumour outcome based on gene expression," Nature, vol. 415, 2002. [36]C. Nutt and e. al, "Gene expression-based classification of malignant gliomas correlates better with survival than histological classification," Cancer Res., vol. 63(7), pp. 1602-1607, 2003. [37]T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander, "Molecular classification of cancer: class discovery and class prediction by gene expression monitoring," Science, vol. 286, pp. 531-537, 1999. [38]S. Armstrong and e. al, "MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia," Nature Genetics, vol. 30, 2002. [39]A. Bhattacherjee and e. al., "Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses," Proc Natl Acad Sci U S A, vol. 98, pp. 13790-13795, 2002. [40]J. Khan and e. al., "Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks," Nature Medicine, vol. 7, 2001. [41]D. Singh and e. al., "Gene expression correlates of clinical prostate cancer behavior," Cancer Cell, vol. 1, 2002. [42]M. Shipp and e. al., "Diffuse large B-cell lymphoma outcome prediction by gene expression profiling and supervised machine learning," Nature Medicine, vol. 8, 2002.
|