|
References [1] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” in IEEE Internation Conference Evolutionary Computation, vol. 1, 2000, pp. 84–88. [2] T. Hendtlass, “Preserving diversity in particle swarm optimisation,” in Developments in Applied Artificial Intelligence, ser. Lecture Notes in Artificial Intelligence, 2003, vol. 2718, pp. 31–40. [3] J. Kennedy, “The behavior of particles,” in Evolutionary Programming, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Berlin, Germany: Springer-Verlag, 1998, pp. 581–590. [4] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Particle swarm optimization algorithms with novel learning strategies,” in 2004 Internation Conference on Systems, Man and Cybernetics, 2004. [5] K. E. Parsopoulos and M. N. Vrahatis, “Initializing the particle swarm optimizer using the nonlinear simplex method,” in Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, A. Grmela and N. Mastorakis, Eds. Interlaken, Switzerland: WSEAS press, 2002, pp. 216–221. [6] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in IEEE Conference Evolutionary Computation, Anchorage, AK, 1998, pp. 69–73. [7] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in Evolutionary Programming, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Berlin, Germany: Springer-Verlag, 1998, vol. 7, pp. 591–600. [8] M. Lovbjerg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm optimiser with breeding and subpopulations,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2001. [9] T. Krink and M. Lovbjerg, “the life cycle model: combining particle swarm 48 optimization, genetic algorithms and hill climbers,” in Proceedings of Parallel Problem Solving from Nature VII, 2002, pp. 621–630. [10] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 225–239, 2004. [11] P. Sunthiti, K. h. Saman, and S. Nirmala, “Optimized rule-based delay proportion adjustment for proportional differentiated services,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 261–276, 2005. [12] H. ER, Global Optimization Using Interval Analysis. Marcel Dekker, New York, 1989. [13] H. R. and T. H, Global Optimization V Deterministic Approaches. MSpringer, New York, 1996. [14] S. S. Rao, Engineering optimization-theory and practice. Wiley, 1996. [15] H. P. Schwefel, Evolution and Optimum Seeking. Wiley, New York, 1995. [16] F. van den Bergh, “An analysis of particle swarm optimizers,” Ph.D. dissertation, Department of Computer Science, University of Pretoria, South Africa, 2002. [17] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, vol. 4, pp. 67–82, 1997. [18] C. S. and F. Oppacher, “What can we learn from no free lunch ? a first attempt to characterize the concept 0f a searchable function,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2001, pp. 1219– 1226. [19] A. E. Eiben and S. J. E., Introduction to evolutionary computing. Springer, 2003. [20] T. B`ack, D. B. Fogel, and Z. Michalewics, Handbook of evolutionary computation. Institute of Physics Publishing, 1998. [21] H.-G. Beyer and H.-P. Schwefel, “Evoultionary strategies: A comrehensive introduction,” Natural Computing, vol. 1, pp. 3–52, 2002. [22] J. H. Holland, Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press, 1975, iSBN: 0-262-58111-6. 49 [23] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addition-Wesley, 1989. [24] J. E. Baker, “Adaptive selection methods for genetic algorithms,” Proceedings of the International Conference on Genetic Algorithms and Their Applications, pp. 101–111, 1985. [25] J. J. Grefenstette and J. E. Baker, “How genetic algorithms work: A critical look at implicit parallelism,” Proceedings of the Third International Conference on Genetic Algorithms (ICGA-89), pp. 20–27, 1989. [26] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Motivation, analysis, and first results,” Complex Systems, vol. 3, no. 5, pp. 493–530, 1989. [27] H. M¨uhlenbein and D. Schlierkamp-Voosen, “Predicitive models for the breeder genetic algorithm: I. continuous parameter optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 25–49, 1993. [28] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in IEEE International Conference Neural Networks, vol. 4, Perth, Australia, 1995, pp. 1942–1948. [29] J. X. Lu, Q. Shen, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Qsar analysis of cyclooxygenase inhibitor using particle swarm optimization and multiple linear regression,” Journal of Pharmaceutical and Biomedical Analysis, vol. 35, no. 4, pp. 679–687, 2004. [30] Q. Shen, J. H. Jiang, C. X. Jiao, W. Q. Lin, G. L. Shen, and R. Q. Yu, “Hybridized particle swarm algorithm for adaptive structure training of multilayer feed-forward neural network: Qsar studies of bioactivity of organic compounds,” Journal of Computational Chemistry, vol. 25, no. 14, pp. 1726– 1735, 2004. [31] Z. L. Gaing, “A particle swarm optimization approach for optimum design of pid controller in avr system,” Ieee Transactions on Energy Conversion, vol. 19, no. 2, pp. 384–391, 2004. [32] S. P. Ghoshal, “Optimizations of pid gains by particle swarm optimizations in fuzzy based automatic generation control,” Electric Power Systems Research, vol. 72, no. 3, pp. 203–212, 2004. [33] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions Evolu- 50 tionary Computation, vol. 6, pp. 58–73, 2002. [34] M. M. Millonas, “Swarms, phase transitionsm and collective intelligence,” In artificial life III, pp. 417–445, 1994. [35] K. Parsopoulos and M. N. Vrahatis, “Recent approaches to global optimization problems through particle swarm optimization,” Natural Computing, pp. 235–306, 2002. [36] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm optimization,” in The 7th International Conference on Evolutionary Programming, San Diego, CA, USA, 1998, pp. 611–616. [37] R. Dawkins, The Selfish Gene. Oxford: Oxford University Press, 1976. [38] P. A. Moscato, “On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms,” Caltech Concurrent Computation Program, Tech. Rep. C3P Report 826, 1989. [39] P. A. Moscato, “Memetic algorithms: a short introduction,” New Ideas in Optimization, pp. 219–234, 1999. [40] F. J. Solis and R. J.-B. Wets, “Minimization by random search techniques,” Mathematical Operations Research, vol. 6, pp. 19–30, 1981. [41] E. G. Philip, M. Walter, and M. H. W., Practical optimization. Academic Press, 1981. [42] S. L.-S. Ho, S.-Y. and C. J.-H., “Intelligent evolutionary algorithms for large parameter optimization problems,” IEEE Transactions Evolutionary Computation, vol. 8, pp. 522–541, 2004. [43] H.-L. H. S.-F. H. S.-Y. H. Bo-Fu Liu, Hung-Ming Chen, “Flexible proteinligand docking using particle swarm optimization,” in The 2005 IEEE Congress on Evolutionary Computation, 2005. [44] D. W. Miller and K. A. Dill, “Ligand binding to proteins: The binding landscape model,” Protein Science, vol. 6, no. 10, pp. 2166–2179, 1997. [45] R. X. Wang, Y. P. Lu, and S. M. Wang, “Comparative evaluation of 11 scoring functions for molecular docking,” Journal of Medicinal Chemistry, vol. 46, no. 12, pp. 2287–2303, 2003. [46] D. S. Goodsell and A. J. Olson, “Automated docking of substrates to proteins by simulated annealing,” Proteins: Structure, Function, and Genetics, vol. 8, pp. 195–202, 1990. 51 [47] M. Liu and S. M. Wang, “Mcdock: A monte carlo simulation approach to the molecular docking problem,” Journal of Computer-Aided Molecular Design, vol. 13, no. 5, pp. 435–451, 1999. [48] G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Development and validation of a genetic algorithm for flexible docking,” Journal of Molecular Biology, vol. 267, no. 3, pp. 727–748, 1997. [49] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, “Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function,” Journal of Computational Chemistry, vol. 19, no. 14, pp. 1639–1662, 1998. [50] J. M. Yang and C. C. Chen, “Gemdock: A generic evolutionary method for molecular docking,” Proteins-Structure Function and Bioinformatics, vol. 55, no. 2, pp. 288–304, 2004. [51] B. D. Bursulaya, M. Totrov, R. Abagyan, and C. L. Brooks, “Comparative study of several algorithms for flexible ligand docking,” Journal of Computer- Aided Molecular Design, vol. 17, no. 11, pp. 755–763, 2003. [52] T. J. A. Ewing, S.Makino, A. G. Skillman, and I. D. Kuntz, “Dock 4.0: Search strategies for automated molecular docking of flexible molecule databases,” Journal of Computer-Aided Molecular Design, vol. 15, no. 5, pp. 411–428, 2001. [53] M. Rarey, B. Kramer, T. Lengauer, and G. Klebe, “A fast flexible docking method using an incremental construction algorithm,” Journal of Molecular Biology, vol. 261, no. 3, pp. 470–489, 1996. [54] A. Silva, A. Neves, and E. Costa, “Sappo: A simple, adaptable, predator prey optimiser,” in Progress in Artificial Intelligence, ser. Lecture Notes in Artificial Intelligence, 2003, vol. 2902, pp. 59–73.
|