跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾健旭
研究生(外文):Chine-Hsu Tseng
論文名稱:側壁浮動閘極結構之複晶矽薄膜電晶體製作與特性分析
論文名稱(外文):Characteristics and Fabrication of Poly-Si TFTs with a Self-Aligned Sidewall Floating Gate
指導教授:楊文祿
指導教授(外文):Wen Luh Yang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:64
中文關鍵詞:薄膜電晶漏電流
外文關鍵詞:thin film transistorsleakage current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
多晶矽薄膜電晶體因為它的載子遷移率比非晶矽大很多已經被廣泛用運用在主動矩陣式液晶顯示器開關元件,為了達到極大型積體電路高速特性,高的電導和較低的漏電流是需要的。而多晶矽薄膜電晶體的特性主要是由多晶矽晶粒的品質和元件的結構決定。因此為了有效的降低漏電流,在本論文中,測壁浮閘結構之複晶矽薄膜電晶此種新穎的結構將被提出來做研究與探討。在本實驗中可以發現到測壁浮閘結構的複晶矽薄膜電晶體再對抑制漏電流方面的的表現比傳統結構的薄模電晶體優異很多,而且並不會因為加了這個結構使得在元件操作時的電流降低,甚至可以跟傳統結構薄模電晶體的電流相似。還有在抑制Kink 效應方面也很好的表現。在此一新結構中,並無需在多加一道光罩,並且幾乎完全符合傳統結構之製程。
Polycrystalline silicon (poly-Si) thin film transistors (TFTs) are widely used as switching devices in active matrix liquid crystal displays (AMLCDs), because of their high carrier mobility compared with amorphous silicon (a-Si). To achieve a ultra large system integration (ULSI) and a high speed performance, a high transconductance and a low off-state leakage current are needed. The electric characteristics of poly-Si TFTs mostly depend on the poly-Si grain quality and the devices structure. In order to reduce the leakage current effectively, the poly-Si thin-film transistors (poly-si TFTs) with a self-aligned sidewall floating (SWF) gate were investigated in this thesis. The OFF state leakage current of the SWF-TFT is four orders of magnitude lower than that of the conventional TFT, while the ON current of the SWF TFT is almost identical to that of the conventional TFT. Moreover, the SWF-TFT shows better kink effect performance than conventional TFT. No additional photo-masking steps are required to fabricate the floating gate of the new TFT and its fabrication process is fully the same as the conventional TFT.
Abstract (in Chinese) I
Abstract (in English) II
Acknowledgment (in Chinese) III
Contents IV
Chapter 1 Introduction
1.1 An Overview of Low Temperature Poly-Si (LTPS) TFTs ……………………..…….1
1.2 Electrical Characteristics of Poly-Si TFTs…………………………………………....4
1.3 Motivation ………………………………………………………………….................5
Chapter 2
ExperimentalProcedures
2.1 Fabrication of SWF TFTs and SWF-LDD TFTs………………………………...……7
2.3 Electrical Parameters Extractions ……………………………………………...……..9
2.3.1 Threshold voltage………………………………………………………...………….9
2.3.2 Subthreshold swing ……………………………………………………….……..….9
2.3.3 Field effect mobility………………………………………………………….…….10
2.3.4 ON / OFF current ratio……………………………………………………………..11
2.3.5 Trap state density ……………………………………………………………….....12
2.4 Material Analysis………………………………………………….……13

Chapter 3 Characterization of Poly-Si TFTs With A Self-Aligned Sidewall Floating Gate
3.1 Introduction ………………………………………………………………...……….20
3.2 Results and Discussion……………………………………………………………....21
3.2.1 Subthreshold characteristics……………………………………………………….21
3.2.2 Kink effects…………………………………………………………………...……25
3.2.3 Threshold Voltage roll off ……………………………………………………...…26
3.2.4 Hot carrier stress…………………………………………………………….…..…27
3.3 Summary……………………………………………………………………….….…28
Chapter 4
Conclusions……………………………………………….………….……..54

Figure Captions
Chapter 2
Fig. 2.1.1 shows the schematic cross sections of the self-aligned sidewall floating gate TFT……………………………………………………………………………………....14
Fig.2.1.2 shows the schematic cross section of conventional TFT……………………. ..14
Fig. 2.2 The fabrication procedure of SWF TFTs and SWF-LDD TFTs……………...19
Chapter 3
Fig. 3.2.1(a). The transfer characteristics of conventional TFT and SWF TFT…............29
Fig. 3.2.1(b). The transfer characteristics of conventional TFT and SWF TFT……..…..30
Fig. 3.2.1(c). The transfer characteristics of conventional TFT and SWF TFT. …….….31
Fig. 3.2.2(a). The transfer characteristics of conventional TFT and SWF-LDD TFT...…32
Fig. 3.2.2(b). The transfer characteristics of conventional TFT and SWF-LDD TF….....33
Fig. 3.2.2(c). The transfer characteristics of conventional TFT and SWF-LDD TFT...... 34
Fig. 3.2.3(a). The transfer characteristics of SWF TFT and SWF-LDD TFT………..….35
Fig. 3.2.3(b). The transfer characteristics of SWF TFT and SWF-LDD TFT………...…36
Fig. 3.2.4(a). The transfer characteristics of SWF-LDD TFT with different floating gate length………………………………………………………………………………..……37
Fig. 3.2.4(b). The transfer characteristics of SWF-LDD TFT with different floating gate length……………………………………………………………………………….…….38
Fig. 3.2.5(a). The transfer characteristics of conventional TFT…………………………39
Fig. 3.2.5(b). The transfer characteristics of SWF-TFT…………………………………40
Fig. 3.2.5(c). The transfer characteristics of SWF-LDD-TFT…………………………...41
Fig. 3.2.6(a). The transfer characteristics of conventional TFT………………………....42
Fig. 3.2.6(b). The transfer characteristics of SWF-TFT……………………………...….43
Fig. 3.2.7 Ion/Ioff Ratio of conventional TFT and SWF-TFT…………………………......44
Fig. 3.2.8(a). Typical output characteristics of conventional TFT, SWF TFT and SWF-LDD TFT…………………………..………………………………………..…..…45
Fig. 3.2.8(b). Typical output characteristics of conventional TFT, SWF TFT and SWF-LDD TFT…………………………………………………………………..….…...46
Fig. 3.2.8(c). Typical output characteristics of conventional TFT, SWF TFT and SWF-LDD TFT……………………………………………………………………….….47
Fig. 3.2.9. Typical output characteristics of SWF-LDD TFT with different floating gate length…………………………………………………………………………………..…48
Fig. 3.2.10. Threshold voltage roll off of conventional TFT and SWF TFT……..….…..49
Fig. 3.211(a). Variations of the threshold voltage under hot carrier stress in conventional TFT and SWF TFT …….………………………………………………………………..50
Fig. 3.2.11(b). Variations of the threshold voltage under hot carrier stress in conventional TFT and SWF TFT…………………..………………………………………..…………51
Fig. 3.2.12(a). Variations of the threshold voltage under hot carrier stress in conventional TFT and SWF TFT …….……………………………………………………..…………52
Fig. 3.2.12(b). Variations of the threshold voltage under hot carrier stress in conventional TFT and SWF TFT …….………………………………………………………..………53
[1] Jun Hanari,“Development of a 10.4-in. UXGA display using low-temperature poly-Si technology,” Journal of the SID, vol. 10, pp. 53-56, 2002.
[2] Yasuhisa Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,” Journal of the SID, vol. 9, pp. 169-172, 2001.
[3] Kiyoshi Yoneda, Hidenori Ogata, Shinji Yuda, Kohji Suzuki, Toshifumi Yamaji, Shiro Nakanishi, Tsutomu Yamada, and Yoshihiro Morimoto, “Optimization oflow-temperature poly-Si TFT-LCDs and a large-scale production line for large glass substrates,” Journal of the SID, vol. 9, pp. 173-179, 2001.
[4] J. G. Blake, J. D. III Stevens, and R. Young, “Impact of low temperature polysilicon on the AMLCD market,” Solid State Tech., vol. 41, pp. 56-62, 1998.
[5] Y. Aoki, T. Lizuka, S. Sagi, M. Karube, T. Tsunashima, S. Ishizawa, K. Ando, H. Sakurai, T. Ejiri, T. Nakazono, M. Kobayashi, H. Sato, N. Ibaraki, M. Sasaki, and N. Harada, “A 10.4-in. XGA low-temperature poly-Si TFT-LCD for mobile PC applications,” in SID Tech. Dig., 1999, pp. 176-179.
[6] H. J. Kim, D. Kim, J. H. Lee, I. G. Kim, G. S. Moon, J. H. Huh, J. W. Hwang, S. Y. Joo, K. W. Kim, and J. H. Souk, “A 7-in. full-color low-temperature poly-Si TFT-LCD,” in SID Tech. Dig., 1999, pp. 184-187.
[7] Y. Matsueda, T. Ozawa, M. Kimura, T. Itoh, K. Kitwada, T. Nakazawa, H. Ohsima, “A 6-bit-color VGA low-temperature poly-Si TFT-LCD with integrated digital data drivers,” in SID Tech. Dig., 1998, pp. 879-882.
[8] Mutsumi Kimura, Ichio Yudasaka, Sadao Kanbe, Hidekazu Kobayashi, Hiroshi Kiguchi, Shun-ichi Seki, Satoru Miyashita, Tatsuya Shimoda, Tokuro Ozawa, Kiyofumi Kitawada, Takashi Nakazawa, Wakao Miyazawa, and Hiroyuki Ohshima,“Low-temperature polysilicon thin- film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, vol. 46, pp. 2282-2288, 1999.
[9] Mark Stewart, Robert S. Howell, Leo Pires, Miltiadis K. Hatalis, Webster Howard, and Olivier Prache, “Polysilicon VGA active matrix OLED displays – technology and performance,” in IEDM Tech. Dig., 1998, pp. 871-874.
[10] Mark Stewart, Robert S. Howell, Leo Pires, and Miltiadis K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001.
[11] Tatsuya Sasaoka, Mitsunobu Sekiya, Akira Yumoto, Jiro Yamada, Takashi Hirano,Yuichi Iwase, Takao Yamada, Tadashi Ishibashi, Takao Mori, Mitsuru Asano, Shinichiro Tamura, and Tetsuo Urabe, “A 13.0-inch AM-OLED display with top emitting structure and adaptive current mode programmed pixel circuit (TAC),” in SID Tech. Dig., 2001, pp. 384-387.
[12] Zhiguo Meng, Haiying Chen, Chengfeng Qiu, Hoi S. Kwok, and Man Wong,
“Active- matrix organic light-emitting diode display implemented using metal-induced unilateral crystallized polycrystalline silicon thin- film transistors,” in SID Tech. Dig., 2001, pp. 380-383.
[13] Zhiguo Meng and Man Wong, “Active- matrix organic light-emitting diode displays realized using metal- induced unilaterally crystallized polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 49, pp. 991-996, 2002.
[14] G. Rajeswaran, M. Itoh, M. Boroson, S. Barry, T. K. Hatwar, K. B. Kahen, K. Yoneda, R. Yokoyama, T. Yamada, N. Komiya, H. Kanno, and H. Takahashi, “Active matrix low temperature poly-Si TFT / OLED full color displays: development status,” in SID Tech. Dig., 2000, pp. 974-977.
[15] W. G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE Trans. Electron Devices, vol. 33, pp. 477-481, 1986.
[16] I-W. Wu, “Cell design considerations for high-aperture-ratio direct-view and projection polysilicon TFT-LCDs,” in SID Tech. Dig., 1995, pp. 19-22.
[17] M. Takabatake, J. Ohwada, Y. A. Ono, K. Ono, A. Mimura, N. Konishi, “CMOS
circuits for peripheral circuit integrated poly-Si TFT LCD fabricated at low temperature below 600 degrees C,” IEEE Trans. Electron Devices, vol. 38, pp. 1303-1309, 1991.
[18] S. Uchikoga and N. Ibaraki, “Low temperature poly-Si TFT-LCD by excimer laser anneal,” Thin Solid Films, vol. 383, pp. 19-24, 2001.
[19] T. Sameshima, “Status of Si thin film transistors,” J. Non-Cryst. Solids, vol. 227-230, pp. 1196-1201, 1998.
[20] K. Tanaka, H. Arai, and S. Kohda, “Characteristics of offset-structure polycrystallinesilicon thin- film transistors,” IEEE Electron Device Lett., vol. 9, pp. 23-25, 1988.
[21] B. H. Min, C. M. Park, and M. K. Han, “A novel offset gated polysilicon thin film transistor without an additional offset mask,” IEEE Electron Device Lett., vol. 16, pp.161-163, 1995.
[22] Byung-Hyuk Min and Jerzy Kanicki, “Electrical characteristics of new LDD poly-Si TFT structure tolerant to process misalignment,” IEEE Electron Device Lett., vol. 20, pp. 335-337, 1999.
[23] Shengdong Zhang, Ruqi Han, and Mansun J. Chan, “A novel self-aligned bottom gate poly-Si TFT with in-situ LDD,” IEEE Electron Device Lett., vol. 22, pp. 393-395, 2001.
[24] Y. Uemoto, E. Fujii, F. Emoto, A. Nakamura, K. Senda, “A high- voltage polysilicon TFT with multigate structures,” IEEE Trans. Electron Devices, vol. 38, pp. 95-100, 1991.
[25] Yasuyoshi Mishima and Yoshiki Ebiko, “Improved lifetime of poly-Si TFTs with a self-aligned gate-overlapped LDD structure,” IEEE Trans. Electron Devices, vol. 49, pp. 981-985, 2002.
[26] M. Hatano, H. Akimoto, and T. Sakai, “A novel self-aligned gate-overlapped LDD poly-Si TFT with high reliability and performance,” in IEDM Tech. Dig., 1997, pp.523-526.
[27] Kwon-Young Choi, Jong-Wook Lee, and Min-Koo Han, “Gate-overlapped lightly
doped drain poly-Si thin- film transistors for large area-AMLCD,” IEEE Trans. Electron Devices, vol. 45, pp. 1272-1279, 1998.
[28] Gi-Young Yang, Sung-Hoi Hur, and Chul-Hi Han, “A physical-based analytical turn-on model of polysilicon thin- film transistors for circuit simulation,” IEEE Trans. Electron Devices, vol. 46, pp. 165-172, 1999.
[29] I-Wei Wu, Alan G. Lewis, Tiao-Yuan Huang, Warren B. Jackson, and Anne Chiang, “Mechanism and device-to-device variation of leakage current in polysilicon thin film transistors,” in IEDM Tech. Dig., 1990, pp. 867-870.
[30] K. R. Olasupo, M. K. Hatalis, “Leakage current mechanism in sub- micron polysilicon thin- film transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 1218-1223, 1996.
[31] M. Lack, I-W. Wu, T. J. King, A. G. Lewis, “Analysis of leakage currents in poly-silicon thin film transistors,” in IEDM Tech. Dig., 1993, pp. 385-388.
[32] M. Hack, and A. G. Lewis, “Avalanche-induced effects in polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 12, pp. 203-205, 1991.
[33] M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin- film transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 2234-2241, 1997.
[34] Alan G. Lewis, I-Wei Wu, Tiao Y. Huang, Mitsu Koyanagi, Anne Chiang and Richard H. Bruce, “Small geometry effects in n- and p-channel polysilicon thin film transistors,” in IEDM Tech. Dig., 1988, pp. 260-263.
[35] Alan G. Lewis, Tiao Y. Huang, I-Wei Wu, Richard H. Bruce and Anne Chiang,
“Physical mechanisms for short channel effects in polysilicon thin film transistors,” in IEDM Tech. Dig., 1989, pp. 349-352.
[36] I. W. Wu, “Low temperature poly-Si TFT technology for AMLCD application,” in Tech. Dig. AM-LCD, 1995, pp. 7–10.
[37] “Poly-Si TFT LCD technology and prospect of further displays,”
in Tech. Dig. EDMS, 1997, pp. 309–312.
[38] J. G. Fossum, A. Ortiz-Conde, H. Shichijo, and S. K. Banerjee, “Anomalous leakage current in LPVCD polysilicon MOSFET’s,” IEEE Trans. Electron Devices, vol. ED-32, pp. 1878–1884, Sept. 1985.
[39] J. I. Han and C. H. Kan, “A self-aligned offset polysilicon thin-film transistor using photoresist reflow,” IEEE Electron Device Lett., vol. 20, pp. 476–477, Sept. 1999.
[40] P. S. Shih, C. Y. Chang, T. C. Chang, T. Y. Huang, D. Z. Peng, and C. F. Yeh, “A novel lightly doped drain polysilicon thin-film transistor with oxide sidewall spacer formed by one-step selective liquid phase deposition,” IEEE Electron Device Lett., vol. 20, pp. 421–423, Aug. 1999.
[41] T. Y. Huang, I.W.Wu,A.G. Lewis, A. Chiang, and R. H. Bruce, “Device sensitivity of field-plated high-voltage TFT’s and their application to low-voltae operation,” IEEE Electron Device Lett., vol. 11, pp. 541–543, Nov. 1990.
[42] K. Tanaka, K. Nakazawa, S. Suyama, and K. Kato, “Characteristics of field-induced-drain (FID) poly-Si TFT’s with high on/off current,” IEEE Trans. Electron Devices, vol. ED-39, pp. 916–920, April 1992.
[43] K. Y. Choi and M. K. Han, “A novel gate-overlapped LDD poly-Si thin film transistor,” IEEE Electron Device Lett., vol. 17, pp. 566–568, Dec. 1996.
[44] W. J. Sah, J. L. Lin, and S. C. Lee, “High-performance a-Si:H thin-film transistor using lightly doped channel, “IEEE Trans. Electron Devices, vol. 38, no. 3, pp. 676-678, 1991.
[45] K. Khakzar, and E. H. Lueder, “Modeling of amorphous-silicon thin-film transistors for circuit simulations with SPICE, “IEEE Trans. Electron Devices, vol.3, no. 6, pp. 1428-1434, 1992.
[46] A. G. Lewis, T. Y. Huang, I. W. Wu, R. H. Bruce, and A. Chiang,, “Physical mechanisms for short channel effects in polysilicon thin film transistors, “IEDM Tech. Dig., pp. 249-352, 1989.
[47] J. Levinson, G. Este, M. Rider, P. J. Scanlon, F. R. Shepherd, and W. D. Westwood, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., vol. 53, no. 2, pp.193, 1982.
[48] J. Y. W. Seto, “The electrical properties of polycrystalline silicon thin films, “J. Appl. Phys., vol. 46, no. 12, pp.5247, 1975.
[49] R. E. Proano et al., “Development and electrical properties of undoped polycrystalline silicon thin film transistors,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1915, 1989.
[50] H. G. Fossum, A. Oritz-Conde, H. Shichijo, and S. K. Banerjee, “Anomalous leakage current in LPCVD polysilicon MOSFET’s,” IEEE Trans. Electron Devices, vol. ED-32, pp. 1878–1884, 1985.
[51] K. R. Olasupo and M. K. Hatalis, “Leakage current mechanism in sub-microm polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 1218–1223, July 1996.
[52] K. Tanaka, H. Arai, and S. Kohda, “Characterization of offset-structure polycrystalline-silicon thin-film transistors,” IEEE Electron Device Lett., vol. 9, pp. 23–25, Jan. 1988.
[53] B. H. Min, C. M. Park, and M. K. Han, “A novel offset gated polysilicon thin film transistor without an additional offset mask,” IEEE Electron Device Lett., vol. 16, pp. 161–163, May 1995.
[54] C. M. Park, B. H. Min, J. H. Jun, J. S. Yoo, and M. K. Han, “Self-alignedoffset gated Poly-Si TFT’s with a floating sub-gate,” IEEE Electron Device Lett., vol. 18, pp. 16–18, Jan. 1997.
[55] K. M. Chang, Y. H. Chung, G. M. Lin, J. H. Lin, and C. G. Deng, “A novel high-performance poly-silicon thin film transistor with a self-aligned thicker sub-gate oxide near the drain/source regions,” IEEE Electron Device Lett., vol. 22, pp. 472–474, Oct. 2001.
[56] C. T. Liu and K. H. Lee, “An experimental study on the short-channel effects in undergated polysilicon thin film transistors with and without lightly doped drain structures,” IEEE Electron Device Lett., vol. 14, pp. 149–151, Mar. 1993.
[57] H. C. Lin, C. M. Yu, C. Y. Lin, K. L. Yeh, T. Y. Huang, and T. F. Lei, “A novel thin-film transistor with self-aligned field induced drain,” IEEE Electron Device Lett., vol. 22, pp. 26–28, Jan. 2001.
[58] K. R. Olasupo, W. Yarbrough, and M. K. Hatalis, “The effect of drain offset on current-voltage characteristics in sub micron polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 1306–1308, Aug. 1996.
[59] Kwon-Young Choi, Jong-Wook Lee, and Min-Koo Han, “Gate-overlapped lightly doped drain poly-Si thin- film transistors for large area-AMLCD,” IEEE Trans. Electron Devices, vol. 45, pp. 1272-1279, 1998.
[60] M. Hatano, H. Akimoto, and T. Sakai, “A novel self-aligned gate-overlapped LDD poly-Si TFT with high reliability and performance,” in IEDM Tech. Dig., 1997, pp. 523-526.
[61] K. Ohgata, Y. Mishima, and N.Sasaki, “A new dopant activation technique for poly-Si TFTs with a self-aligned gate-overlapped LDD structure,” in IEDM Tech. Dig., 2000, pp. 205-208.
[62] Yasuyoshi Mishima and Yoshiki Ebiko, “Improved lifetime of poly-Si TFTs with a self-aligned gate-overlapped LDD structure,” IEEE Trans. Electron Devices, vol. 49, pp. 981-985, 2002.
[63] A. Valletta, Luigi Mariucci, Guglielmo Fortunato, S. D. Brotherton, and J. R. Ayres, “Hot carrier-induced degradation of gate overlapped lightly doped drain (GOLDD) polysilicon TFTs,” IEEE Trans. Electron Devices, vol. 49, pp. 636-642, 2002.
[64] A. Pecora, F. Massussi, L. Mariucci, G. Fortunato, J. R. Ayres, and S. D. Brotherton, “Numerical analysis of the electrical characteristics of gate overlapped lightly doped drain polysilicon thin film transistors,” Jpn. J. Appl. Phys., vol. 38, pp. 3475-3481, 1999.
[65] S. Lifshitz, M. Luryi, R. Pinto, and C. S. Rafferty, “Active-gate thin-film transistor,” IEEE Electron Device Lett., vol. 14, pp. 394–396, Aug. 1993.
[66] J.R. Davis, A. E. Glaccum, K. Reeson, and P. L. F. Hemment, “Inproved subthreshold characteristics of n-channel SOI transistors,” IEEE Electron Device Lett., vol. 7, no. 10, p. 570, 1986.
[67] C. D. Chen, M. Matloubian, R. Sundaresan, B. Y. Mao, C. C. Wei, and G. P. Pollack, “Single-transistor latch in SOI MOSFETs,” IEEE Electron Device Lett., vol. 9, no. 12, p. 636, 1988.
[68] M. Hack, and A. G. Lewis, “Avalanche-induced effects in polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 12, pp. 203-205, 1991.
[69]Ching-Wei Lin, Li-jing cheng, Yin-Lung Lu, and Huang-Chung Chung, “characterization of low temperature polysilicon TFTs with self-aligned graded LDD structure,” Mat.Res.Soc.SYMP.Proc.,vol.685E,D12.7.1-D12.7.6,2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 2.王乾任(2004)。書評與行銷。出版界, (71),44。
2. 1.王乾任(2004)。如何開墾一片書評田地-簡論台灣書評。佛教圖書館館訊,(38),16-23。
3. 28.張玉法(1977)。關於書評寫作的一些問題。書評書目,(53),9月:25-28。
4. 22.洪肇隆(1981)。選書指南:書評。書府,(3),71-74。
5. 21.思兼(1972)。關於書評。書評書目,創刊號,6-13。
6. 20.封德屏(2004,3月)。用書評的觀點來品書。佛教圖書館館訊,(37),33-37。
7. 18.林珊如(2001,3月)。書籍網站資訊組織架構與瀏覽介面設計的考量:以亞馬遜網路書店為例。大學圖書館,5(1),16-32。
8. 15.林妙雀(2003)。消費者特徵、網站經營者特性及網路交易特質對消費者選擇網路購物決策影響之研究。中華管理學報,4(2),19-43。
9. 14.拉扣斯(2004)。網路書評試探。出版界,(69),29-31。
10. 11.汪美香、葉桂珍(2000)。消費者屬性、網站滿意度與網路購物意願關係之研究。企業管理學報,(48),121-137。
11. 7.吳燕惠(2001,7月)。網路讀者書評對讀者角色的衝擊-以亞馬遜網站為例。資訊社會研究,(1),85-120。
12. 5.吳肇銘(2000)。網站特性與網站使用者之網站態度、購物意願之關係研究--結構化方程式模型。企業管理學報,(46),33-48。
13. 3.余強生,曾雍欽(2003)。網際網路購物者特性、購物動機、期望的網站服務與顧客滿意度之間的結構化方程式模型。企業管理學報,(57),37-64。