跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信宏
研究生(外文):Hsin-Hung Chen
論文名稱:δ-摻雜砷化銦鋁/砷化銦鎵/磷化銦高電子移動率電晶體之研製
論文名稱(外文):Investigation of δ-doped InAlAs/InGaAs/InP High Electron Mobility Transistor
指導教授:楊文祿李景松
指導教授(外文):Wen-Luh YangJing-Song Lee
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:80
中文關鍵詞:漸變式通道表面缺陷衝擊游離紐結效應
外文關鍵詞:surface trapimpact-ionizationkink effectgraded-channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們研究以「金屬有機化學氣相沉積」方式成長三種不同元件通道結構之砷化銦鋁/砷化銦鎵/磷化銦高電子移動率電晶體,分別為均勻式通道、步階型漸變式通道、以及反向線性漸變式通道。

以磷化銦為基底之高電子移動率電晶體 (InP-based HEMT)經過證明具有高頻應用以及低雜訊的特性,但是由於存在較大閘極漏電流和較小的崩潰電壓而限制了元件在功率方面的應用,因此為了改善元件崩潰電壓特性,我們藉由有效限制通道厚度、降低閘極與通道中的電場分佈,以改善衝擊游離化的效應。另外,我們在蕭基層上成長一層磷化銦,一方面和砷化銦鋁具有高蝕刻選擇比,以獲致較高的蝕刻均勻度;另一方面也可提供防止蕭基層產生表面缺陷與有效改善紐結效應。

由實驗結果顯示,步階型漸變式通道結構可以增加元件外部轉導值、降低輸出轉導,進而得到較高電壓增益並且改善元件高頻特性,因此適合利用在高速和高增益的應用,另一方面,反向線性漸變式通道結構擁有較大閘極電壓擺幅特性,並且增加元件的電流驅動能力和崩潰電壓,可以利用在高線性度以及功率應用方面。另外,我們發現在高電子移動率電晶體中利用步階型漸變式通道、以及反向線性漸變式通道可以改善元件的熱穩定性,進而增強元件的高溫應用。
In this thesis, the characteristics of the InAlAs/InGaAs/InP HEMT with different channel structures by metal organic chemical vapor deposition (LP-MOCVD) have been studied. The channel structures were lattice-match channel, step-graded channel and inverse linear-graded channel, respectively.

InP-based HEMTs have demonstrated excellent high frequency and low noise performance. But the power performance is limited by excessive leakage currents and relatively low breakdown voltage. In order to improve the breakdown characteristics, reduction of the channel thickness effectively leads to effectively suppression of impact ionization by limiting the electric field beneath the gate. Besides, we have grown an InP layer on the InAlAs Schottky layer, the etching stop layer, which is a viable solution to improve Vth reproducibility. It also contributes to suppressing kink effects in InP-based HEMTs and avoiding surface trap generation.

From experimental results, Due to the intrinsic high-speed property of the high-In composition In0.56Ga0.44As subchannel design and the decreased separation distance between 2DEG and gate electrode, the SGC-HEMT exhibiting higher extrinsic transconductance, lower output conductance, higher voltage gain, and improved microwave performances, is suitable for high-frequency and high-gain millimeter-wave integrated circuit (MMIC) applications. On the other hand, ILGC-HEMT has demonstrated superior linearity, wider GVS regime, improved breakdown characteristics, improved current drive, and superior output power performance, due to the inverse linearly-graded InxGa1-xAs channel design. Consequently, the proposed ILGC-HEMT is suitable for high-power with good linearity MMIC applications. Besides, we also found using step-graded channel and inverse linear-graded channel structures in HEMTs can improve the thermal stability for its promising high-temperature applications.
Acknowledgement...............................................................i
Abstract (Chinese)............................................................ii
Abstract (English)..........................................................iii
Figure Captions.............................................................vii
Chapter 1 Introduction........................................................1
Chapter 2 Epitaxial Growth System and Experimental Procedures ................4
2-1 Introduction of LP-MOVCD system...........................................4
2-2 Device Fabrication Processes..............................................7
2-2-1 Sample Orienting...............................................7
2-2-2 Mesa Isolation.................................................7
2-2-3 Source and Drain Ohmic Contact Formation.......................8
2-2-4 Gate Schottky Contact Formation................................8
Chapter 3 Operation principle of InGaAs channel HEMT.........................10
3-1 Introduction ............................................................11
3-2 HEMT Structure Layer Design.........................................12
3-2-1 Cap Layer..............................................................12
3-2-2 Etching stop layer.....................................................12
3-2-3 Schottky Layer.........................................................13
3-2-4 δ-doped Carrier Supply Layer...........................................13
3-2-5 Spacer Layer...........................................................14
3-2-6 Various InxGa1-xAs channel.............................................14
3-2-7 Buffer layer...........................................................14
Chapter 4 Experimental Results and Discussions...............................16
4-1 Device Structures........................................................16
4-2 Hall Measurement.........................................................17
4-3 SIMS Measurement.........................................................18
4-4 DC Characteristics.......................................................19
4-4-1 DC Characteristics at 300 K............................................19
(A) Current-Voltage Characteristics..........................................19
(B) Extrinsic Transconductance Characteristics...............................20
(C) Two-terminal Breakdown Voltage Characteristics...........................22
4-4-2 Kink Effect............................................................23
(A) Impact Ionization........................................................23
(B) Output Conductance.......................................................24
4-4-3 Temperature Characteristics............................................25
(A) Extrinsic Transconductance Characteristics...............................25
(B) Two-terminal Breakdown Voltage Characteristics...........................27
4-5 RF Characteristics.......................................................27
4-6 Power Characteristics....................................................28
4-7 Noise Characteristics....................................................29
Chapter 5 Conclusions........................................................31
Reference....................................................................33
[1]M. Kao, P. M. Smith, P. Ho, P. Chao, K. H. G. Duh, A. A. Jobra, and J. M. Ballingall, “Very high power-added efficiency and low-noise 0.15-μm gate length pseudomorphic HEMT’s,” IEEE Electron Device Lett., nol. 10, p. 580, 1989.

[2]G. M. Metze, J. F. Bass, T. T. Lee, A. B. Cornfeld, J. L. Singer, H. L. Hung, H. C. Huang, and K. P. Pande, “High-gain, V-band, low-noise MMIC amplifiers using pseudomorphic MODFETs,” IEEE Electron Device Lett., vol. 11, p. 24, 1990.

[3]A. Ketterson, J. W. Seo, M.Tong, K. Nummila, D. Ballegeer, S. M. Kang, K. Y. Cheng, and I. Adesida, “A 10-GHz bandwidth pseudomorphic GaAs/InGaAs/AlGaAs MODFET-based OEIC receiver,” IEEE Trans. Electron Devices, vol. 39, p.2676, 1992.

[4]C. S. Wu, C. K. Pao, W. Yan, H. Kanber, M. Hu, S. X. Bar, A. Kurdoghlian, Z. Bardia, D. Bosch, C. Seashore, and M. Gawronski, “Pseudomorphic HEMT manufacturing technology for multifunctional Ka-band MMIC applications,” IEEE Microwave Theory and Tech., vol. 43, p. 257, 1995.

[5]S. E. Rosenbaum, B. K. Kormanyos, L. M. Jellian, M. Matloubian, A. S. Brown, L. E. Larson, L. D. Nguyen, M. A. Thompsom, L. P. B. Katehi, and G. M. Rebeiz, “155- and 213 GHz AlInAs/GaInAs/InP HEMT MMIC oscillators,” IEEE Microwave Theory and Tech., vol. 43, p. 927, 1995.

[6]T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “a new Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions”, Jap. J. Appl. Phys., vol. 19, no. 5, p. L225-L227, 1980.

[7]S. Karmalkar, G. Ramesh, “A simple yet comprehensive unified physical model of the 2D electron gas in delta-doped and uniformly doped high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 47, p.308, 2000.

[8]Y. Ando, T. Itoh, “Accurate modeling for parasitic source resistance in two-dimensional electron gas field-effect transistors,” IEEE Trans. Electron Devices, vol. 36, p.1036, 1989.

[9]L. D. Nguyen, W. J. Schaff, P. J. Tasker, A. N. Lepore, L. F. Palmateer, M. C. Foisy, L. F. Eastman, “Charge control, DC, and RF performance of a 0.35 μm pseudomorphic AlGaAs/InGaAs modulation-doped field-effect transistor,” IEEE Trans. Electron Devices, vol. 35, p.139, 1988.

[10]A. Lepore, M. Levy, H. Lee, E. Kohn, D. Radulescu, R. Tiberio, P. Tasker and L. Eastman, “Fabrication and performance of 0.1-μm gate-length AlGaAs/GaAs HEMTs with unity current gain cutoff frequency in excess of 110 GHz,” IEEE Trans. Electron Devices, vol. 35, p. 2441, 1988.

[11]K. I. Song, C. Caneau, K. B. Chough and W. P. Hong, “GaInP/GaAs double heterojunction bipolar transistor with high fT, fmax and breakdown voltage,” IEEE Electron Device Lett., vol. 15, p. 10, 1994.

[12]Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, “Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs With an Ultrahigh fT of 562 GHz,” IEEE Electron Device Lett., vol. 23, No. 10, October 2002.

[13]K. Sawada, K. Makiyama, T. Takahashi, K. Nozaki, M. Igarashi, and N. Hara, “Fabrication of 0.1 μm-gate InP HEMTs Using i-Line Lithography,” IEEE conference 2003.

[14]K. Shinohara, Y. Yamashita, A. Endoh, I.Watanabe, K. Hikosaka, T. Matsui, T. Mimura, and S. Hiyamizu, “547-GHz fT In0.7Ga0.3As–In0.52Al0.48As HEMTs With Reduced Source and Drain Resistance,” IEEE Electron Device Lett., Vol. 25, No. 5, May 2004.

[15]P. C. Chao, A. Tessmer, K. H. G. Duh, M. Y. Kao, P. Ho, P. Ho, P. M. Smith, J. M. Ballingall, S. M. Liu, and A. A. Jabra, “W-band low-noise InAlAs/InGaAs lattice matched HEMT’s,” IEEE Electron Device Lett., vol. 11, p. 59, 1990.

[16]K. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoyo, “High-performance InP-based enhancement HEMTs using nonalloyed ohmic contacts and Pt-buried-gate technologies,” IEEE Trans. Electron Devices, vol. 43, p. 252, 1996.

[17]A. Mahajan, M. Arafa, P. Fey, C. Caneau, and I. Adesida, “ 0.3 μm gate length enhancement-mode AlInAs/InGaAs/InP high-electron mobility transistor,” IEEE Device Lett., vol. 18, p. 284, 1997.

[18]J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K. L.Kavanagh, “Strain relaxation of compositionally graded InxGa1-xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures,” Appl. Phys. Lett., vol. 60, p. 1129, 1992.

[19]Meneghesso, G.; Buttari, D.; Perin, E.; Canali, C.; Zanoni, E. “Improvement of DC, low frequency and reliability properties of InAlAs/InGaAs InP-based HEMTs by means of an InP etch stop layer,” Electron Devices Meeting, 1998. IEDM ''98 Technical Digest., International6-9 Dec. 1998 Page(s):227 – 230.

[20]F. Medjdoub, D. Theron, F. Dessenne, R. Fauquembergue, and J. C. De Jaeger, “Monte Carlo study of the breakdown of an AlInAs/GaInAs HEMT on InP with an InP etch stop layer,” 2002 IEEE.

[21]T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, “30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs,” IEEE Trans. Electron Devices, vol. 49, p. 1694, 2002.

[22]F. Bobin, H. Meier, O. J. Homan, and W. Bachtold, “A Novel Asymmetric Gate Recess Process for InP HEMTs,” J. Vac. Sci. Technol. B, vol. 11, no.6, pp. 2560-2564, 1993.

[23]S. R. Bahl, and J. A. Del Alamo, “Breakdown voltage enhancement from channel quantization in InAlAs/n+-InGaAs HFET’s,” IEEE Electron Device Lett., vol. 13, pp.123-125, Feb. 1992.


[24]G. Meneghesso, A. Neviani, M. Matloubian, T. Liu, J. J. Brown, C. Canali, and E. Zanoni, “On-State and Off-state Breakdown in GaInAs/InP Composite-Channel HEMT’s with Variable GaInAs Channel Thickness,” IEEE Transactions on Electron Device, vol.46, no. 1, January 1999.

[25]Mark H. Somerville, Chris S. Putnam, and Jesus A. del Alamo, “Determining Dominant Breakdown Mechanism in InP HEMTs,” IEEE Electron Device Lett., vol. 22, no. 12 December 2001.

[26]A. Sleiman, A. D. Carlo, P. Lugli, G. Meneghesso, E. Zanoni, and J. L. Thobel, “Channel Thickness Dependence of Breakdown Dynamic in InP-Based Lattice-Matched HEMTs,” IEEE Transactions on Electron Device, vol. 50, no. 10, October 2003.

[27]T. Enoki, K. Arai, A. Kohzen, and Y. Ishii, “Design and characteristics of InGaAs/InP composite-channel HEMT’s,” IEEE Trans. Electron Devices, vol. 42, pp. 1414-1418, Aug. 1995.

[28]S. M. Wang, C. Karlsson, N. Rorsman, M. Bergh, E. Olsson, T. G. Andresson, and H. Zirath, “Molecular beam epitaxy growth and characterization of InxGa1-xAs (0.57 ≦ x ≦ 1) on GaAs using InAlAs graded buffer,” J. Cryst. Growth, vol. 175/176, p. 1016, 1997.

[29]K. K. Lee, T. Brown, G. Dagnall, R. Bicknell-Tassius, A. Brown, and G. S. May, “Using neural networks to construct models of the molecular beam epitaxy process,” IEEE Trans. Semi. Manufac., vol. 13, p. 34, 2000.

[30]P. H. Garrett, J. J. Heyob, V. J. Hunt, S. R. LeClair, O. D. Patterson, “Decoupled flux control for molecular beam epitaxy,” IEEE Trans. Semi. Manufac., vol. 6, p. 348, 1993.

[31]M. Jaffe, G.E Tatagiri.; G Collins, in Proc. IEEE/Cornell Conf., (1987). 70.

[32]R. T. Hsu, H. M. Shieh, W. C. Hsu, and T. S. Wu, “Enhanced current driving capability GaAs/graded InxGa1-xAs high electron mobility transistor,” Solid-State Electron, vol. 36, p. 1143, 1993.

[33]Y. J. Li, J. S. Su, Y. S. Lin and W. C. Hsu, “Investigation of a graded channel InGaAs/GaAs heterostructure transistor,” Superlattices and Microstructures, vol. 28, p. 47, 2000.

[34]Fazal Ali and Aditya Gupta, “HEMTs and HBTs : Devices, Fabrication and Circuits”, Artech House, Boston London.

[35]W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, Y. H. Wu, “On the improvement of gate voltage swing in δ-doped GaAs/InxGa1-xAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices, vol. 40, p. 1630, 1993.

[36]W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current In0.49Ga0.51P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, p. 274, 1998.

[37]R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove, F. Fantini, “On the effects of hot electrons on the DC and RF characteristics of lattice-matched InAlAs/InGaAs/InP HEMTs”, IEEE Microwave and Guided Wave Lett., vol. 7, p. 3, 1997.

[38]M. Feng, D. R. Scherrer, P. J. Apostolakis, J. W. Kruse, “Temperature dependent study of the microwave performance of 0.25 μm gate GaAs MESFETs and GaAs pseudomorphic HEMTs”, IEEE Trans. Electron Devices, vol. 43, p.852, 1996.

[39]Suemitsu, T., Enoki, T., Sano, N., Tomizawa, M., Ishii, Y., “An analysis of the kink phenomena in InAlAs/InGaAs HEMT''s using two-dimensional device simulation,” IEEE Transactions on Electron Devices, vol. 45 , no. 12 , Dec. 1998 p.2390 – 2399.

[40]Somerville, M.H., Ernst, A., del Alamo, J.A., “A physical model for the kink effect in InAlAs/InGaAs HEMTs,” IEEE Transactions on Electron Devices, vol. 47 , no. 5 , May 2000 p.922 – 930.

[41]Horio, K., Wakabayashi, A., “Numerical analysis of surface-state effects on kink phenomena of GaAs MESFETs,” IEEE Transactions on Electron Devices, vol. 47, no. 12, Dec. 2000 p.2270 – 2276.

[42]Haruyama, J., Negishi, H., Nishimura, Y., Nashimoto, Y., “Substrate-related kink effects with a strong light-sensitivity in AlGaAs/InGaAs PHEMT,” IEEE Transactions on Electron Devices, vol. 44 , no. 1 , Jan. 1997 p.25 – 33.

[43]Mansoor M. Ahmed, “Schottky Barrier Depletion Modification — A source of output conductance in submicron GaAs MESFET,” IEEE Transactions on Electron Devices, vol. 48, no. 5, May 2001, pp. 830-834.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top