跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭哲瑋
研究生(外文):Jhe-Wei Guo
論文名稱:鎳奈米粒子合成與研究
論文名稱(外文):Synthesis and Analysis of Nickel Nanoparticles
指導教授:施仁斌
指導教授(外文):Jen-Bin Shi
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:48
中文關鍵詞:氯化鎳奈米粒子
外文關鍵詞:nickel chloridenanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以氯化鎳為前驅物,乙二醇為溶劑以及聯胺為還原劑製作鎳奈米粒子。在合成過程中加入氫氧化鈉調整pH值,以增強聯胺還原能力。
研究發現,利用5mM氯化鎳為前驅物溶於乙二醇中,以10M聯胺為還原劑,在水浴60℃下反應可得直徑40~50奈米之奈米粒子。吾人並以FE-SEM、TEM做表面形態分析,XRD以及EDS做結構以及成份分析,VSM做磁性量測分析。
由SEM分析中可知,吾人製作之奈米粒子為40~50奈米,由XRD及EDS分析可知所製作之奈米粒子為面心立方結構(fcc)之鎳奈米粒子。在VSM量測中,可得飽和磁化量(Ms)為51.4 emu/g、殘餘磁化量(Mr)為16 emu/g、矯頑磁力(Hc)為117Oe。與塊材相較吾人所製作之奈米粒子有較低之飽和磁化量,卻有較高之殘餘磁化量。
In this study, we tried to use nickel chloride, ethylene glycol and hydrazine to synthesize nickel nanoparticles, and add sodium hydroxide to adjust pH to 10 ~ 12. In this method, we could synthesize nickel nanoparticles by hydrazine reduction in ethylene glycol. Then, we analyzed the uniform dispersion nickel nanoparticles surface shape and particle size by the FE-SEM and TEM, the structure by the XRD, and measure the magnetic properties by the vibrating sample magnetometer (VSM). We could observe the particle size 40 ~ 50 nm from FE-SEM images, but the TEM images show the particle size about 10 ~ 20 nm. By the analysis of the X-ray diffraction and EDS, the particles were characterized to be the pure nickel crystalline with face-center cubic structure. The saturation magnetization was 51.4 emu/g lower than bulk nickel. But the remanent magnetization was 16 emu/g higher than bulk nickel. The coercive force was 117Oe at room temperature.
Contents
誌謝 ........................................................................i
摘要 .......................................................................ii
Abstract ..................................................................iii
Contents ...................................................................iv
List of Figures ...........................................................v
List of Tables .........................................................vii
Chapter I ...........................................................1
1.1 Preface ...........................................................1
1.2 Theory Background ..................................................2
1.2.1 Nanomaterials ..................................................2
1.2.2 The Application of Nanoparticles ................................5
1.3 Magnetic Material ..................................................5
1.3.1 The Theory of Magnetism .........................................5
1.3.2 The Application of Magnetic Nanoparticles .......................8
1.4 The Core-Shell particles .........................................9
1.5 The Fabrication of Nanoparticles ........................................10
1.5.1 Solvent Extraction Reduction ........................................12
1.5.2 Polyol Reduction .................................................13
1.5.3 Photolytic Reduction .................................................14
1.6 Motivation ..........................................................14
Chapter II ..........................................................15
2.1 Synthesize Nanoparticles ........................................15
2.1.1 Materials ..........................................................15
2.1.2 Methods ..........................................................15
2.1.3 Core-Shell Particles .................................................17
2.2 Analysis ..........................................................19
Chapter III ..........................................................21
3.1 The Parameter of Process ........................................21
3.2 Particle Size Analysis .................................................22
3.3 Components and Structure Analysis ...............................32
3.4 Magnetic Properties .................................................35
Chapter IV ..........................................................36
Reference .............................................................37
Reference
[1] C&E News, 24, 47, 1995
[2] P. Russell, “Photonic crystal fibers,” Science, vol. 299, pp. 358-362,2003.
[3] S. W. Koch and A. Knorr, “Optics in the nano-world,” Science, vol.293, pp. 2217-2218, 2001.
[4] W. C. W. Chan and S. Nie, “Quantum dot bioconjugates forultrasensitive nonisotopic detection,” Science, vol. 281, pp. 2016-2018,1998.
[5] J. I. Pascual, N. Lorente, Z. Song, H. Conrad, and H. P. Rust,“Selectivity in vibrationally mediated single-molecule chemistry,”Nature, vol. 423, pp. 525-528, 2003.
[6] J. Aizenberg, D. A. Muller, J. L. Grazul, and D. R. Hamann, “Directfabrication of large micropatterned single crystals,” Science, vol. 299,pp. 1205-1208, 2003.
[7] Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silvernanoparticles,” Science, vol. 298, pp. 2176-2179, 2002.
[8] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean,“DNA- templated self-assembly of protein arrays and highly conductive nanowires,” Science, vol. 301, pp. 1882-1884, 2003.
[9] C. M. Niemeyer, “Tools for the biomolecular engineer,” Science, vol.297, pp. 62-63, 2002.
[10] G. Y. Tseng and J. C. Ellenbogen, “Toward nanocomputers,” Science, vol. 294, pp. 1293-1294, 2001.
[11] R. F. Service, “Assembling nanocircuits from the bottom up,” Science,vol. 293, pp. 782-785, 2001.
[12] J. Cumings and A. Zettl, “Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes,” Science, vol. 289, pp. 602-604, 2000.
[13] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897-1899, 2001.
[14] D. L. Huffaker and D. G. Deppe, “Electroluminescence efficiency of 1.3 µm wavelength InGaAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 73, pp. 520-522, 1998.
[15] J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. Yang, “Single nanowire lasers,” J. Phys. Chem. B, vol. 105, pp. 11387-11390, 2001.
[16] E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science, vol. 257, pp. 189-195, 1992.
[17] D. Zhang, C. Li, X. Liu, S. Han, T. Tang, and C. Zhou, “Doping dependent NH3 sensing of indium oxide nanowires,” Appl. Phys. Lett., vol. 83, pp. 1845-1847, 2003.
[18] H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon nanotube single-electron transistors at room temperature,” Science, vol. 293, pp. 76-79, 2001.
[19] S. Veprek, “Electronic and mechanical properties of nanocrystalline composites when approaching molecular size,” Thin Solid Films, vol. 297, pp. 145-153, 1997.
[20] G. W. Meng, L. D. Zhang, C. M. Mo, H. J. Li, Y. Qin, S. Y. Zhang, and S. P. Feng, “Microstructural characterization of amorphous SiO2 wrapped β-SiC nanowhiskers”, Nanostruct. Mater., vol.10, pp. 601-606, 1998.
[21] C. M. Mo, L. Zhang, and Z. Yuan, “Optical absorption of nanostructured Al2O3”, Nanostruct. Mater., vol.5, pp. 95-99,1995
[22] Y. H. Li, C. M. Mo, L. D. Zhang, R. C. Liu, and Y. S. Liu,” Intense green-yellow luminescence from nanostructured SiO2 with codoping of Dy3+ and Al3+ “, Nanostruct. Mater., vol.11, pp. 307-310,1999.
[23] D. Zhao, H. Zhao, and W. Zhou, “Dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies”, Physica E, vol.9, pp. 679-685 ,2001.
[24] K. Kaneto, M. Tsuruta, G. Sakai, W. Y. Cho, and Y. Ando,”Electrical conductivities of multi-wall carbon nano tubes” , Synthetic Metals, vol.103, pp. 2543-2546, 1999.
[25] A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, and G. ThomasGiant ,“magnetoresistance in heterogeneous Cu-Co alloys”, Phys. Rev. Lett., vol.68,pp.3745–3748, 1992.
[26] J. Q. Xiao, J. S. Jiang, and C. L. Chien,“Giant magnetoresistance in nonmultilayer magnetic systems”, Phys. Rev. Lett., 68, pp.3749–3752, 1992.
[27] J. Karch, R. Birringer, and H. Gleiter, “Ceramics ductile at low temperature “, Nature, 330, 556 (1987).
[28] G. W. Nieman, J. R. Weertman, and R. W. Siegel, “Mechanical behavior of nanocrystalline Cu and Pd, “ J. Mater. Res., vol. 6, p.p. 1012, 1991.
[29] F. Delie, “Evaluation of nano- and microparticle uptake by the gastrointestinal tract”, Adv. Drug Deliv. Rev., vol. 34, p.p. 221-233, 1998.
[30] L. Gao and Q. Zhang, “Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticles”, Scripta Mater., vol. 44, p.p.1195-1198, 2001.
[31] M. Xu, J. Ma, J. Gu, and Z. Lu, “Photocatalytic TiO2 nanoparticles damage to cellular membranes and genetic supramolecules “, Supramolecular Sci., vol. 5, p.p. 511- 513, 1998.
[32] M. J. Weins, H. Gleiter, and B. Chalmers, “ Computer Calculations of the Structure and Energy of High-Angle Grain Boundaries”, J. Appl. Phys., vol. 42, p.p.2639-2645, 1971.
[33] Janos H. Fendler, “Atomic and molecular clusters in membrane mimetic chemistry”, Chem. Rev., vol. 87, p.p. 877-899 , 1987.
[34] 蘇品書編撰,超微粒子材料技術,復漢出版社 (1989)
[35] 莊萬發編撰,超微粒子理論應用,復漢出版社 (1995)
[36] Chikazumi, S. 著; 張喣、李學養合譯。磁性物理學,聯經公司出版, 1981.
[37] 鄭振東編譯,實用磁性材料,全華出版社,1999
[38] Sun, S.; Murray, C. B.; Weller, D.; Floks, L.; Moser, A. “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices”, Science, vol. 287, p.p. 1989-1992, 2000.
[39] 吳宗展,龐磁阻磁穿隧之研究,國立中山大學碩士論文,2002.
[40] Tregure M., Cointet C., Remita H., Khatouri J., Mostafavi M., Amblard J., Keyzer R., “Dose Rate Effects on Radiolytic Synthesis of Gold-Silver Bimetallic Clusters in Solution”, J. Phys. Chem. B, vol. 102, p.p. 4310-4321, 1998.
[41] Werner Stober,” Controlled growth of monodisperse silica spheres.”, J. Colloid and Interface Science, vol. 26, p.p. 62-69, 1968
[42] M. Ohmori, E. Matijevic, “Preparation and properties of uniform coated colloidal particles.” J. Colloid Interface Sci. 150, p.594, 1992.
[43] Li, Y.D., C.W. Li, L.Q. Wang and Y.T. Qian, “Preparation of nickel ultrafine powder and crystalline film by chemical control reduction”, Materials Chemical and Physics, vol. 59, p. 88-90, 1999.
[44] H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, G.Q. Xu, “Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone) “ Langmuir, vol. 12, p.p. 909-912, 1996.
[45] S. Remita, M. Mostafavi, M.O. Delcourt, ” Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis”, Radiat. Phys. Chem., vol. 47, p.p. 275-279, 1996.
[46] Kurihara, L.K., G.M. Chow and P.E. Schoen, “Nanocrystalline metallic powders and films produced by the polyol method”, Nanostructured Materials, vol. 6, pp. 607-613, 1995.
[47] Kalyanaraman, R., S Yoo, M.S. Krupashankara, T.S. Sudarhan and R.J. Dowding, “Synthesis and consolidation of iron nanopowders”, Nanostrucred Materials., vol. 8, PP. 1379-1392, 1998.
[48] 任鏘俞,奈米金屬粒子之製備及其性質研究,國立清華大學論文,1999
[49] Wang, C., X.M. Zhang, X.F. Qian, Y. Xie, W.Z. Wang and Y.T. Qian, “Preparation of nanocrystalline nickel powders through hydrothermal reduction method”, Materials Research Bulletin, vol. 33, PP. 1747-1751, (1998)
[50] Hegde, M.S., D. Larcher, L. Dupont, B. Beaudoin, K. Teakaia-Elhsissen and J.-M. Tarascon, “Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders”, Solid State Ionics, vol. 93, PP. 33-50, (1997)
[51] Zhu, Y., Y. Qian, M. Zhang, Z. Chen, M. Chen and G. Zhou, “Preparation and characterization of nanocrystalline nickel powders by the γ-radiation method”, Journal of Msterials Science Letters, vol. 13, pp. 1234-1245, (1994)
[52] J.H. Hwang, V.P. Dravid, M.H. Teng, J.J. Host, B.R. Elliott, D.L. Johnson, T.O. Mason, “Magnetic properties of graphitically encapsulated nickel nanocrystals”, J. Matter. Res., vol. 12, p.p. 1076-1082, (1997)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 星雲大師(2004)。佛教對「生命教育」的看法。普門學報,22,245—275。
2. 李新鄉(1995)。國民小學教師專業工作知能、自我概念、學校認同之研究。嘉義師院學報,9,15—50。
3. 李新鄉(1995)。國民小學教師專業工作知能、自我概念、學校認同之研究。嘉義師院學報,9,15—50。
4. 張郁芬(2001)。生命教育的理念探究與實施。教師之友,42(2),15-21。
5. 星雲大師(2004)。佛教對「生命教育」的看法。普門學報,22,245—275。
6. 張郁芬(2001)。生命教育的理念探究與實施。教師之友,42(2),15-21。
7. 陳郁汝(2002)。行政人員自我導向學習能力、工作投入與學校行政效能之研究。國立高雄師範大學成人教育學系碩士論文,未出版。
8. 陳郁汝(2002)。行政人員自我導向學習能力、工作投入與學校行政效能之研究。國立高雄師範大學成人教育學系碩士論文,未出版。
9. 黃文三(1996)。教師的角色、責任與教學行為。高市文教,58,50—56。
10. 黃文三(1996)。教師的角色、責任與教學行為。高市文教,58,50—56。
11. 鄭英耀、黃正鵠(1996)。教師自我效能相關因素之研究。教育學刊,12,219-244。
12. 鄭英耀、黃正鵠(1996)。教師自我效能相關因素之研究。教育學刊,12,219-244。
13. 謝天德(1998)。國小教師工作投入、團體凝聚力與社會閒散關係之研究。國立屏東師範學院國民教育研究所碩士論文。
14. 謝天德(1998)。國小教師工作投入、團體凝聚力與社會閒散關係之研究。國立屏東師範學院國民教育研究所碩士論文。
15. 顏銘志(1996)。國民小學教師教學信念、教師效能與教學行為之相關研究。國立屏東師範學院國民教育研究所碩士論文,未出版。