跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 21:28
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:張雪梅
Author (Eng.):Chang-Hsueh Mei
Title:Zr置換Ti對鈦酸釤鉍薄膜之特性影響
Title (Eng.):Characteristices of Zr substituted by Ti in Bi3.25Sm0.75 Ti3 O12 thin films
Advisor:施仁斌
degree:Master
Institution:逢甲大學
Department:電子工程所
Narrow Field:工程學門
Detailed Field:電資工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2005
Graduated Academic Year:93
language:Chinese
number of pages:54
keyword (chi):置換鐵電特性
keyword (eng):BTOMDS
Ncl record status:
  • Cited Cited :7
  • HitsHits:265
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
中文摘要
本實驗以Pt/Ta/SiO2/Si為基板,利用 MOD法製備BTO鐵電薄膜。分別在鈦酸鉍(Bi4Ti3O12)薄膜中摻雜製備(Bi3.25Sm0.75Ti3)O12、(Bi3.25Sm0.75Ti2Zr1)O12、( Bi3.25Sm0.75Ti1.5Zr1.5)O12 三種鐵電薄膜。試著探討不同含量的摻雜、不同的退火溫度,對 Bi4Ti3O12薄膜的鐵電性質漏電流之影響。當未摻雜Zr時,操作電壓在2V時漏電流保持在10-9左右,而摻雜Ti2Zr1時,操作電壓在2V漏電流保持在10-9左右,當摻雜Ti1.5Zr1.5時,操作電壓在2V漏電流保持在10-6左右。因為摻雜使結晶溫度提高,退火溫度越高表面晶粒越大越粗糙使漏電流增加。在未摻雜Zr時,退火溫度在650 ℃有最大的2Pr (23.5 uC /cm2)。當摻雜Ti2 Zr1時,退火溫度750 ℃有最大的2Pr (11.1 uC /cm2),因為退火溫度過高導致薄膜交互擴散,失去了鐵電的特性。
Abstract
In this study, (Bi4Ti3O12) thin films on Pt/TA/SiO2/Si substrate by metal-organic deposition methods (MOD).Zr substituted BTO films were also investigated in this work. The thicknesses of these thin films were about 2300Å.The crystal structure and surface morphology were analyzed by X- Ray and SEM measurement. LCR meter and HP4194 measured the dielectric constant and leakage current of the films.
Additions of Zr to the BTO films enhance to up crystal temperature . For Ti2/Zr1 substituted BTO films, the leakage current below 2V keep on 10-9.For Ti1.5/Zr1.5 substituted BTO films, the leakage current below 2V keep on 10-6.The 2Pr decreased with the Zr concentration because adding Zr into Bi4Ti3O12 could cause less structure distortion.
目錄
頁次
中文摘要.......................................................................................................I
英文摘要......................................................................................................II
目錄.............................................................................................................III
圖目錄.......................................................................................................VII
表目錄........................................................................................................XI
第一章 緒論...............................................................................................11
1-1 前言................................................................................................11
1-2 研究目的與動機............................................................................12
第二章 文獻回顧.......................................................................................14
2-1 鐵電材料原理.................................................................................14
2-2 電性機制.........................................................................................17
2-2-1 介電性....................................................................................17
2-2-2 極化機制................................................................................18
2-2-3 漏電流機制............................................................................19
2-2-4 依時性介電崩潰....................................................................21
III
2-2-5 介電強度....................................................................................22
2-2-6 介電損失....................................................................................22
2-3 薄膜製作技術..................................................................................23
2-3-1 濺鍍法(Sputtering).....................................................................24
2-3-2 雷射剝鍍法(Laser ablation).......................................................25
2-3-3 離子束濺鍍................................................................................25
2-3-4 有機金屬化學氣相沉積法(MOCVD)......................................26
2-3-5 有機金屬分解法與溶膠凝膠法................................................26
2-3-6 溶膠凝膠法(sol-gel method)................................................27
2-3-6-1 溶膠凝膠法基本原理.............................................................27
2-3-6-2 溶膠凝膠製程主要步驟.........................................................28
2-4 鍍膜方式........................................................................…................29
2-5 低溫焦化(Pyrolysis)熱處理......................................…...............30
2-6 高溫結晶與緻密化熱處理..............................................…..............31
2-7 組成對SBT薄膜性質之影響...........................................................32
2-7-1 W和Mo的取代添加與BTO性質..........................................32
2-7-2 Nd的取代添加與BTO性質…................................................32
2-7-3 La和V的取代添加與BTO性質.............................................32
2-7-4 Sm的取代添加與BTO性質................................................33
2-7-5 La和Zr的取代添加與BTO性質.......................................33
參考文獻...........................................................................................34
圖目錄
頁次
圖2-1 鐵電材料的遲滯曲線圖..............................................................39
圖2-2 鋇鈦礦結構圖..............................................................................40
圖2-3 鋇鈦礦結構鈦離子偏移..............................................................40
圖2-4 鐵電薄膜在元件上之應用..........................................................41
圖2-5 材料的四種極化機構簡圖.........................................................42
圖2-6 單靶及多靶濺鍍法之示意圖.......................................................43
圖2-7 雷射剝鍍法之示意圖...................................................................43
圖2-8 離子束濺鍍示意圖.......................................................................44
圖2-9 有機金屬化學氣相沉積設備示意圖...........................................44
圖2-10 薄膜浸鍍過程.............................................................................45
圖2-11 薄膜旋鍍過程.............................................................................45
圖2-12 W和Mo共摻雜的2Pr與2Ec....................................................46
圖2-13 W和Mo分別共摻雜5%時的抗疲勞特性...............................47
圖2-14 W和Mo分別共摻雜5%時的漏電流關係圖...........................47
圖2-15 Pt/BNdT/Pt 的介電係數與介電損失......................................48
VII
圖2-16 Pt/BNdT/Pt 的漏電流關係圖...................................................48
圖2-17 BIT , BLT , BTV , BLTV的Pr與Ec關係圖................................49
圖2-18 Ir/TiO2/SiO2/Si 的2Pr與2Ec關係圖..........................................50
圖2-19 BSmT 的X-RD變化圖................................................................51
圖2-20 BSmT 的2Pr與2Ec關係圖..........................................................51
圖2-21 BSmT 的抗疲勞特性....................................................................52
圖2-22 BLT,BTZ,BLTZ 的Pr與Ec關係圖..............................................53
圖2-23 BLT , BTZ , BLTZ 的抗疲勞特性................................................53
表目錄
頁次
表2-1 氣相鍍膜與化學液相鍍膜之比較.................................................54
表2-2 常見陶瓷薄膜製程之比較.............................................................54
參考文獻
[1] 石朗, “由MRAM/FeRAM 與Flash 卡應用潛力探究記憶體市 場技術的新思維與新契機”, Compo Tech, Vol. 16, (2000) 100.
[2] J.F. Scott , “Ferroelectric memories a atatus report ” present at Gover-nment Industry Review of Ferroelectric memories Sept 14 (1998).
[3] I. Stolichnov , A. Tagantsev , N. Setter , J.S. Cross ans M. Tsukda ,Appl. Phys. Lett. , Vol. 74 , 3552 (1999).
[4] H.M. Duiker , P.D. Beale , J.F. Scott , C.A. Paz de Araujo , B. M. Melnick , J.D. Cuchiaro , and L.D. McMillan , J. Appl. Phys. Vol. 68 , 5783 (1990).
[5] W.L. Warren , B.A. Tuttle , and D. Dimos , Appl. Phys. Lett.67 ,1426 (1995).
[6] P.C. Fazan , Integr. Ferroelect. , Vol. 4 , 247 (1994).
[7] W. Kinney , Integr. Ferroelect. , Vol. 4 , 131 (1994).
[8] R. Ramesh , A. Inam , B. Wilkens , W.K. Chan , S.L. Hart , K. Luther, and J.M. Yarascon , Science , 944 (1991).
[9] R. Ramesh , J. Lee , T. Sands , and V.G. Keramidsa , Appl. Phys.Lett. Vol. 64(19) , 2511 (1994).
[10] Kingery, Bowen, Vhlmann, Introduction to Ceramics,(1987).
[11] 徐靖薰 交通大學材料所碩士論文(1997).
[12] 吳朗,電子陶瓷(介電)全欣科技圖書,(1994) .
[13] Arthony R. West, Soild State Chemistry and its Application , (1984).
[14] 工業材料第155期,1999 年11月
[15] A. Kingon , Nature , Vol 401 , 658 (1999)
[16] J.L. Moll and U. Tarui , Rrans. Electron Devices (Solid-State Res.Conf. Abs. ) ED-10 , 338 (1963).
[17] J.F. Scott , and C.A. Paz. de. Araujo , Science , 246 , 1400 (1989).
[18] [6] C.A. Araujo , L.D McMillan , B.M. Melnick , J.D. Cuchiaro , and J.F.Scott , “Ferroelectric Memories” Ferroelectric. 104 , 241 (1990).
[19] G.A. Racine , R. Luthier , and N.F. Derooj , in Microelectro
Mechanical System , Fort Lauderdale , FL , 1993(IRRR m New York ,1993) , p128-132.
[20] K. Brooks , D. Damjanovic , A. Kholkin , I. Renney , N. Setter , P.Luginbuhl , G.A . Racine , N.F. Derooij , and A. Saaman , IntegrFerroelec . 8 , 13 (1995).
[21] A.M. Glass , Phys. Rev. 172 , 564 (1968).
[22] I. Hussain , A. Kumar , A. Mangiaracina , S.C. Perlaky , C.C. Mccombs , F. Zhong , J.J. Weimer , L. Sanderson , “Fabrication lf
piezoelectric Sensor for Biomedical Application” , Mat. Res. Soc.
Symp. Proc. Vol. 459 , 501 (1997).
[23] J.C. Webster , and F. Zernike , Ferroelectrics , 10 , 249 (1976).G.C. Messenger , and F.N. Coppage , IEEE Trans. Nucl. Sci. NS-35 ,1461 (1988).
[24] S.K. Dey , and R. Znleeg , Ferroelectric , 108 , 37 (1990).
[25] [15] C.A. Pazde. Araujo , L.D. Mcmillan , B.M. Melnick , J.D. Cucharo ,and J.F. Scott , Ferroelectrics , 104 , 241 (1990).
[26] K. Ramkumar , J. Lee , A. Safari , S.C. Danforth , Mat. Res. Soc.Symp. Proc. 200 , 121 (1990).
[27] 汪建民, “陶瓷技術手冊”, 中華民國產業科技發展協進會, 1994.
[28] W.D.Kingery, H.K.Bowen, and D.R.Uhlmann “Introduction to Ceramics, 2nd Edition, John Wiley&Sons, New York, (1976) .
[29] L. L. Hench and J. K. West, “ Principles of Electronic Ceramics”, John Wiley & Sons, 1990.
[30] J. B. Hudson, Surface Science, Ch17, Butterworth-Heinemann,1992.
[31] R. Waser, “Polarization, Conduction, and Breakdown in nonferroelectric Perovskite Thin Films”, Kluwer Academic. ,1995.
[32] B. Chapman, “Glow Discharge Process”, John Wiley & Sons, Inc., (1980) .
[33] O. Auciello, A. I. Kingon, and S. B. Krupanidhi, “Sputter Synthesis of Ferroelectric Films and Heterostructures”, MRS Bulletin, 20, (1996) 25.
[34] 吳泰伯, “強介電薄膜之物理氣相沉積技術”, 工業材料, 190(1996) 135.
[35] J. Dieleman, E. van de Riet, and J. C. S. Kools, “Laser Ablation Deposition : Mechanism and Application,” Jpn. J. Appl. Phys., 31(6B), (1992)1964.
[36] S. K. Dey and P. V. Alluri, ”PE-MOCVD of Dielectric Thin Films: Challenge and Opportunities” ,MRS Bulletin, (1996)44.
[37] B. A. Tuttle and R. W. Schwartz, “Solution Deposition of Ferroelectric Thin Films,” MRS ulletin, (1996) 49.
[38] 陳三元,強介電薄膜之液相化學法製作,工業材料,108, 100(1995).
[39] Xusheng Wang ,and Hiroshi lshiwara, Appl.Phys.Lett.82,2479 (2003).
[40] Uong Chou,Ki-Bum Kim, Hyun m. Jang , Gyu-Chul Yi Appl. Phys.Lett.79,3137 (2001).
[41] Di Wu, Aidong Li, and Naiben Ming, J. Appl. Phys. 95,4275 (2004).
[42] Takashi Watanabe, and Hiroshi Funakubo Appl. Phys. Lett. 80, 100 (2002) .
[43] S. T. Zhang,and Y. F. Chen, J. Wang and G .X. Cheng ,Z. G. Liu and N. B. Ming , Appl.Phys Lett.84,3660 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
system icon system icon