|
[1] Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs, New Jersey, U.S.A., 1989. [2] Lonnie C. Ludeman, Random Processes Filtering; Filtering, Estimation, and Detection, John Wiley & Sons, Inc, Hoboken, New Jersey, U.S.A., 2003. [3] C. L. Byrne and R. M. Fitzgerald, “Reconstruction from partial information, with applications to tomography,” SIAM J. Appl. Math., vol. 42, pp. 933–940, 1982. [4] C. L. Byrne, R. M. Fitzgerald, M. A. Fiddy, T. J. Hall, and A. M. Darling, “Image restoration and resolution enhancement,” J. Opt. Soc. Am., vol. 73, pp. 1481–1487, 1983. [5] C. L. Byrne and R. K. Fitzgerald, “Spectral estimators that extend the maximum entropy and maximum likelihood methods,” SIAM J. Appl. Math., vol. 44, pp. 425–442, 1984. [6] C. L. Byrne and M. A. Fiddy, “Estimation of continuous object distributions from limited Fourier magnitude measurements,” J. Opt. Soc. Am. A, vol. 4, pp. 112–117, 1987 [7] Lokenath Debnath and Piotr Mikusinski, Introduction to Hilbert Spaces With Applications, 2nd ed, Academic Press, San Diego, California, U.S.A., 1999. [8] A. M. Darling, Digital object reconstruction from limited data incorporating prior information. PhD thesis, Queen Elizabeth College, 1984. [9] J. Burg, Maximum entropy spectral analysis, in the 37th Annual SEG meeting, Oklahoma City, OK, 1967. [10] J. Burg, “The relationship between maximum entropy spectra and maximum likelihood spectra,” Geophysics, 37, 1972, 375–376. [11] J. Burg, Maximum Entropy Spectral Analysis, Ph.D. dissertation, Stanford University, 1975. [12] Peyton Z. Peebles, Probability, Random Variables, and Random Signal Principles, 4th ed, McGraw-Hill, Inc, New York, 2001 [13] C. L. Byrne and R. M. Fitzgerald, “Spectral estimators that extend the maximum entropy and maximum likelihood methods,” SIAM J. Appl. Math., 44(2),425–442 , 1984. [14] C. L. Byrne, Signal Processing: A Mathematical Approach. Wellesley,MA: AK Peters, Ltd., 2005. [15] Papoulis, A. Signal Analysis, McGraw-Hill, Inc, 1977.
|