跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 17:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:買明賢
研究生(外文):Ming-Hsien Mai
論文名稱:台北縣氣喘學童在不同時序及微環境下多粒徑懸浮微粒暴露評估
論文名稱(外文):Temporal and Microenvironmental Particulate Exposures for Asthmatic Children in Taipei County
指導教授:張立德張立德引用關係
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:72
中文關鍵詞:氣喘學童微環境懸浮微粒暴露
外文關鍵詞:asthmatic childrenmicroenvironmentparticulate exposures
相關次數:
  • 被引用被引用:4
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣喘學童由於其敏感的體質,再加上平日白天時間多待在學校中,因此其對空氣污染物的暴露及活動型態,可能與一般大眾有所不同,本研究即針對台北縣新莊市新泰國小之氣喘學童,利用直讀式微粒採樣儀,配合活動日誌,來探討其在不同微環境下,包括室內(臥室、客廳、補習班、教室等)、室外之微粒暴露量。並以不同時序(不同月份、週末(平日)、及日(夜)等)為基礎,探討微粒暴露值及暴露頻率是否有明顯的改變。而當特殊活動(環境二手菸、拜香、烹煮、及打掃)進行時,本研究中也將試圖探討其粒徑分布及微粒產生量。此外,由於新泰國小位於國內首座之微粒超級測站旁,本研究亦將利用超級測站之空品資料,來探討室內外懸浮微粒濃度之相關性。

本研究起迄時間為2003年12月,至2004年12月,針對氣喘學童進行微粒暴露監測,共取得29名氣喘學童資料,每人進行1到3次採樣,每次採樣為3到5天,總計233個採樣日。

氣喘學童於不同時序之微粒暴露濃度,在月份方面,受氣象型態之影響,PM10以12月份為最高(平均濃度為84.8 �慊/m3),PM2.5及PM1以1月份為最高(平均濃度分別為48.8 �慊/m3及40.9 �慊/m3)。此外,平日時,各主要粒徑於之微粒暴露濃度高於週末,可能原因為學校中人群聚集及通風之影響;同樣的,學童於日間之主要活動微環境為學校,各主要粒徑微粒暴露濃度皆以日間高於夜間。另外,學童之微粒暴露濃度與超級測站測值之相關性於春冬兩季較佳,推測可能因春冬兩季天氣較為涼爽,門窗開啟較頻繁,使得通風較佳,相關性也因此上升;此外,而受活動微環境之影響,平日及日間之暴露濃度皆有與超級測站測值較佳之相關性。

學童於家中微環境之微粒暴露濃度,主要粒徑皆以客廳為最高,臥室為最低,細區分粒徑於PM0.9-1.0以下及PM4.0-5.0以上之粒徑範圍,亦以客廳仍為最高。另一方面,非家中微環境之微粒暴露濃度,因學校為人群聚集及通風良好之微環境,主要粒徑微粒濃度皆以此微環境為最高,在細區分粒徑部分,PM5.0-7.5粒徑範圍以下之微粒濃度亦以學校為最高。

最後,學童於特殊活動出現時所增加之微粒暴露,環境二手菸以PM1為主要產生粒徑,且在PM0.3-0.4及PM0.4-0.5粒徑範圍有較高之微粒濃度。烹煮及拜香產生之微粒粒徑主要為PM2.5,並且於PM0.3-0.4粒徑範圍有較高之微粒濃度。打掃活動產生之微粒,以PM2.0-3.0以上粒徑範圍有較高之暴露濃度,其中又以PM5.0-7.5為最高。
Due to the fact that asthmatic children are susceptible and usually stay in school during the daytime, their air pollutant exposures could be very different from those for normal people. The aim of this study was to assess particulate exposures for asthmatic children residing in Hsin-Chuang City, Taipei County, in different microenvironments (bedroom, living-room, extension classes, and outdoors, etc.) and time series (month, weekday (weekend), and day (night)). When specific activities (environmental tobacco smoking (ETS), burning sticks, cooking, and cleaning) were performed, particle size distributions and their corresponding concentrations were also investigated. Finally, the air quality data from the particle supersite were also obtained to evaluate the correlation between microenvironmental and corresponding ambient particulate concentrations.

The sampling period was from December, 2003 to December, 2004. To assess particulate exposures for asthmatic children, 29 asthmatic children were recruited, each of whom was sampled one to three times, with each sampling period of three to five days, and the total sampling days of 233 days.

Results showed that, for monthly microenvironmental particulate exposures, average PM10 concentrations were the highest in December (84.8 �慊/m3), while the highest mean concentrations for PM2.5 and PM1 appeared in January (48.8 �慊/m3 and 40.9 �慊/m3, respectively). Furthermore, during the weekday, exposure levels for the main-sized particles (PM10, PM2.5, and PM1) were higher than those of the weekend as school was the major activity microenvironment for children, where their particle exposures were influenced by crowded people and ventilation status. Similarily, children stay in school during the daytime, so that daytime particulate exposures were higher than the nighttime levels for main-sized particles. Beside, the correlations of the particulate concentrations between children and the supersite data were stronger in both of the spring and winter seasons, as compare to other seasons, since in both seasons doors and windows kept opened more often for better ventilation.

In the residential microenvironments, due to the crowded people and frequent activities, PM10, PM2.5, and PM1 exposure levels were the highest in the living-room, and the lowest in the bedroom. For the multi-sized particles, when the particle sizes were above PM0.9-1.0 and below PM4.0-5.0, the particulate exposures also showed the highest in the living-room. On the other hand, for non-residential microenvironments, the highest particulate concentrations were found in school, especially for particle sizes smaller than 5.0 �慆.

For particulate exposures attributed by specific activities, when ETS was existing in the microenvironment, PM1 was the main particle size which showed increased concentrations, with higher concentrations shown in both of the PM0.3-0.4 and PM0.4-0.5 range. Additionally, cooking and burning sticks increased the particle concentrations for PM2.5, with apparent enhanced levels for PM0.3-0.4. Finally, when cleaning activities were performed increased concentrations for particles larger than 3.0 �慆 in diameter were reported, especially for PM5.0-7.5.
中文摘要...........................................................................................................Ⅰ
英文摘要.....................................................................................................Ⅲ
目錄................................................................................................................Ⅴ
表目錄.............................................................................................................Ⅶ
圖目錄.........................................................................................................Ⅷ

第一章 前言................................................................................................................01
第二章 文獻回顧........................................................................................................04
2.1 學童之微粒暴露與其健康影響...............................................04
2.2 室內微粒來源......................................................................05
2.3 其他族群之微粒暴露…............………………...………………07
第三章 材料與方法....................................................................................................09
3.1 研究對象................................................................................09
3.2 採樣儀器................................................................11
3.3 採樣策略................................................................12
3.4 資料整理與統計分析.............................................................13
第四章 結果................................................................................................................17
4.1 不同時間序列下學童之微粒暴露................................................17
4.1.1 不同月份之學童微粒暴露…..............................................................17
4.1.2 週末及平日之學童微粒暴露..........................................................19
4.1.3 日間及夜間之學童微粒暴露.........................................................20
4.2 不同微環境之學童微粒暴露.................................................21
4.2.1 主要粒徑微粒(PM10, PM2.5, PM1, PM2.5-10, PM1-2.5)之微環境環境暴露...........................................................................21
4.2.2 細區分粒徑之微環境暴露......................................................24
4.3 特殊活動時之學童微粒暴露.................................................25
第五章 討論................................................................................................................25
5.1不同時間序列下學童之微粒暴露...............................................................27
5.2不同微環境下學童之微粒暴露...................................................................28
5.3特殊活動時學童之微粒暴露.....................................................................30
5.4氣喘兄妹於同時序及類似微環境之微粒暴露..........................................31
第六章 結論................................................................................................................32
第七章 參考文獻........................................................................................................34
附錄一 採樣日誌.............................................................................................69
附錄二 活動日誌.............................................................................................72


表目錄

表1、氣喘學童個案基本資料....................................................................41
表 2、台北縣氣喘學童主要粒徑懸浮微粒之小時暴露值.................................43
表 3、台北縣氣喘學童不同月份主要粒徑懸浮微粒之小時暴露值...................44
表4、不同月份學童微粒暴露與超級測站監測值之相關係數(rs).................46
表5、台北縣氣喘學童週末(平日)之主要粒徑懸浮微粒小時暴露值............47
表6、台北縣氣喘學童日(夜)主要粒徑懸浮微粒之小時暴露值..................48
表7、台北縣氣喘學童微環境活動時間比例.................................................49
表8、台北縣氣喘學童於家中不同微環境之10分鐘微粒暴露濃度.............50
表9、台北縣氣喘學童於非家中之不同微環境之10分鐘微粒暴露濃度值.51
表10、不同微環境學童微粒暴露與超級測站監測值之相關係數(rs)...................52
表11、台北縣氣喘學童於不同特殊活動時下之微粒濃度增加值........................53

圖目錄

圖 1、氣喘學童微粒暴露評估之研究架構......................................................09
圖2、受測學童住家之地理位置分布圖......................................................11
圖3、台北縣氣喘學童於不同月份之PM10小時暴露濃度值.....................54
圖4、台北縣氣喘學童於不同月份之PM2.5小時暴露濃度值....................55
圖5、台北縣氣喘學童於不同月份之PM1小時暴露濃度值......................56
圖6、台北縣氣喘學童於不同月份之PM2.5-10小時暴露濃度值.................57
圖7、台北縣氣喘學童於不同月份之PM1-2.5小時暴露濃度值..................58
圖8、台北縣氣喘學童於平日及週末之主要粒徑微粒小時暴露濃度..........59
圖9、台北縣氣喘學童於日間及夜間之主要粒徑懸浮小時暴露濃度..........60
圖10、台北縣氣喘學童於客廳中之各粒徑微粒10分鐘暴露濃度值.........61
圖11、台北縣氣喘學童於臥室中之各粒徑微粒10分鐘暴露濃度值.......62
圖12、台北縣氣喘學童於家中其他場所中之各粒徑微粒10分鐘暴露濃.... 度值.................................................................................................63
圖13、台北縣氣喘學童於學校中之各粒徑微粒10分鐘暴露濃度值.......64
圖14、台北縣氣喘學童於補習班中之各粒徑微粒10分鐘暴露濃度值...65
圖15、台北縣氣喘學童於其他非家中之室內場所中之各粒徑微粒10分鐘... 暴露濃度值....................................................................................................66
圖16、台北縣氣喘學童於上下學途中或室外之各粒徑微粒10分鐘暴... 露濃度值.......................................................................................................67
圖17、氣喘兄妹平日之典型活動與微粒暴露(02/12/2004)............68
1.Harrison, R.M., Key pollutants - airborne particles. Science of the Total Environment, 2004. 334-35: p. 3-8.
2.Lutgens, F.K. and E.J. Tarbuck. The Atmosphere. 2001: Prentice-Hall, Inc. Upper Sddle River, New Jersey 07458.
3.行政院環保署, 國家環境保護計畫. 1998.
4.Dockery, D.W., C.A. Pope, X.P. Xu, et al., An Association Between Air Pollution and Mortality in 6 United-States Cities. New England Journal of Medicine, 1993. 329(24): p. 1753-1759.
5.Samet, J.M., F. Dominici, F.C. Curriero, et al., Fine particulate air pollution and mortality in 20 US Cities, 1987-1994. New England Journal of Medicine, 2000. 343(24): p. 1742-1749.
6.Pope, C.A., Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who''s at risk? Environmental Health Perspectives, 2000. 108: p. 713-723.
7.Pope, C.A., Review: Epidemiological basis for particulate air pollution health standards. Aerosol Science and Technology, 2000. 32(1): p. 4-14.
8.Cheng, T.J., J.S. Hwang, P.Y. Wang, et al., Effects of concentrated ambient particles on heart rate and blood pressure in pulmonary hypertensive rats. Environmental Health Perspectives, 2003. 111(2): p. 147-150.
9.Pino, P., T. Walter, M. Oyarzun, et al., Fine particulate matter and wheezing illnesses in the first year of life. Epidemiology, 2004. 15(6): p. 702-708.
10.行政院環保署, 中華民國環境保護統計年報. 2004.
11.Chen, M.L., I.F. Mao, and I.K. Lin, The PM2.5 and PM10 particles in urban areas of Taiwan. Science of the Total Environment, 1999. 226(2-3): p. 227-235.
12.Chen, M.L. and I.F. Mao, Spatial variations of airborne particles in metropolitan Taipei. Science of the Total Environment, 1998. 209(2-3): p. 225-231.
13.Yang, K.L., Spatial and seasonal variation of PM10 mass concentrations in Taiwan. Atmospheric Environment, 2002. 36(21): p. 3403-3411.
14.Ramachandran, G., J.L. Adgate, N. Hill, et al., Comparison of short-term variations (15-minute averages) in outdoor and indoor PM2.5 concentrations. Journal of the Air & Waste Management Association, 2000. 50(7): p. 1157-1166.
15.Howard-Reed, C., A.W. Rea, M.J. Zufall, et al., Use of a continuous nephelometer to measure personal exposure to particles during the US Environmental Protection Agency Baltimore and Fresno panel studies. Journal of the Air & Waste Management Association, 2000. 50(7): p. 1125-1132.
16.Janssen, N.A.H., G. Hoek, H. Harssema, and B. Brunekreef, Childhood exposure to PM10: relation between personal, classroom, and outdoor concentrations. Occupational and Environmental Medicine, 1997. 54(12): p. 888-894.
17.Janssen, N.A.H., G. Hoek, H. Harssema, and B. Brunekreef, Personal exposure to fine particles in children correlates closely with ambient fine particles. Archives of Environmental Health, 1999. 54(2): p. 95-101.
18.Howel, D., R. Darnell, and T. Pless-Mulloli, Children''s respiratory health and daily particulate levels in 10 nonurban communities. Environmental Research, 2001. 87(1): p. 1-9.
19.Timonen, K.L. and J. Pekkanen, Air pollution and respiratory health among children with asthmatic or cough symptoms. American Journal of Respiratory and Critical Care Medicine, 1997. 156(2): p. 546-552.
20.English, P., R. Neutra, R. Scalf, et al., Examining associations between childhood asthma and traffic flow using a geographic information system. Environmental Health Perspectives, 1999. 107(9): p. 761-767.
21.Brunekreef, B., N.A.H. Janssen, J. deHartog, et al., Air pollution from truck traffic and lung function in children living near motorways. Epidemiology, 1997. 8(3): p. 298-303.
22.Jedrychowski, W., E. Flak, and E. Mroz, The adverse effect of low levels of ambient air pollutants on lung function growth in preadolescent children. Environmental Health Perspectives, 1999. 107(8): p. 669-674.
23.Lin, S., J.P. Munsie, S.A. Hwang, et al., Childhood asthma hospitalization and residential exposure to state route traffic. Environmental Research, 2002. 88(2): p. 73-81.
24.Tiittanen, P., K.L. Timonen, J. Ruuskanen, et al., Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children. European Respiratory Journal, 1999. 13(2): p. 266-273.
25.Yu, O.C., L. Sheppard, T. Lumley, et al., Effects of ambient air pollution on symptoms of asthma in Seattle-area children enrolled in the CAMP study. Environmental Health Perspectives, 2000. 108(12): p. 1209-1214.
26.Schwartz, J., D.W. Dockery, L.M. Neas, et al., Acute Effects of Summer Air Pollution On Respiratory Symptom Reporting in Children. American Journal of Respiratory & Critical Care Medicine, 1994. 150(5): p. 1234-1242.
27.Schwartz, J. and L.M. Neas, Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology, 2000. 11(1): p. 6-10.
28.Norris, G., S.N. YoungPong, J.Q. Koenig, et al., An association between fine particles and asthma emergency department visits for children in Seattle. Environmental Health Perspectives, 1999. 107(6): p. 489-493.
29.Lioy, P.J., J.M. Waldman, T. Buckley, et al., The Personal, Indoor and Outdoor Concentrations of Pm-10 Measured in an Industrial Community During the Winter. Atmospheric Environment Part B-Urban Atmosphere, 1990. 24(1): p. 57-66.
30.Tamura, K., M. Ando, M. Sagai, and Y. Matsumoto, Estimation of levels of personal exposure to suspended particulate matter and nitrogen dioxide in Tokyo. Environmental Sciences, 1996. 4(1): p. 37-51.
31.Jamriska, M., S. Thomas, L. Morawska, and B.A. Clark, Relation between indoor and outdoor exposure to fine particles near a busy arterial road. Indoor Air, 1999. 9(2): p. 75-84.
32.Liu, Y.S., R. Chen, X.X. Shen, and X.L. Mao, Wintertime indoor air levels of PM10, PM2.5 and PM1 at public places and their contributions to TSP. Environment International, 2004. 30(2): p. 189-197.
33.Ramachandran, G., J.L. Adgate, G.C. Pratt, and K. Sexton, Characterizing indoor and outdoor 15 minute average PM2.5 concentrations in urban neighborhoods. Aerosol Science and Technology, 2003. 37(1): p. 33-45.
34.Cyrys, J., M. Pitz, W. Bischof, et al., Relationship between indoor and outdoor levels of fine particle mass, particle number concentrations and black smoke under different ventilation conditions. Journal of Exposure Analysis and Environmental Epidemiology, 2004. 14(4): p. 275-283.
35.Ferro, A.R., R.J. Kopperud, and L.M. Hildemann, Elevated personal exposure to particulate matter from human activities in a residence. Journal of Exposure Analysis and Environmental Epidemiology, 2004. 14: p. S34-S40.
36.Wallace, L., Correlations of personal exposure to particles with outdoor air measurements: A review of recent studies. Aerosol Science & Technology, 2000. 32(1): p. 15-25.
37.Rodes, C.E., R.M. Kamens, and R.W. Wiener, The significance and characteristics of the personal activity cloud on exposure assessment measurement for indoor contaminants. Indoor Air, 1991. 2: p. 123-145.
38.Rojas-Bracho, L., H.H. Suh, P.J. Catalano, and P. Koutrakis, Personal exposures to particles and their relationships with personal activities for chronic obstructive pulmonary disease patients living in Boston. Journal of the Air & Waste Management Association, 2004. 54(2): p. 207-217.
39.Long, C.M., H.H. Suh, and P. Koutrakis, Characterization of indoor particle sources using continuous mass and size monitors. Journal of the Air & Waste Management Association, 2000. 50(7): p. 1236-1250.
40.Jones, N.C., C.A. Thornton, D. Mark, and R.M. Harrison, Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations. Atmospheric Environment, 2000. 34(16): p. 2603-2612.
41.Chan, C.C., S.K. Huang, Y.C. Chen, and J.D. Wang, Mass concentrations of respirable particulate and smoker''s homes in rural area of Taiwan. Institute of Occupational Medicine and Industrial Hygiene, 1996. 15(5): p. 425-433.
42.Williams, R., J. Suggs, A. Rea, et al., The Research Triangle Park particulate matter panel study: PM mass concentration relationships. Atmospheric Environment, 2003. 37(38): p. 5349-5363.
43.Lachenmyer, C. and G.M. Hidy, Urban measurements of outdoor-indoor PM25 concentrations and personal exposure in the deep south. Part I. Pilot study of mass concentrations for nonsmoking subjects. Aerosol Science and Technology, 2000. 32(1): p. 34-51.
44.Rojas-Bracho, L., H. Suh, and P. Koutrakis, Relationships among personal, indoor, and outdoor fine and coarse particle concentrations for individuals with COPD. JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY, 2000. 10(3): p. 294-306.
45.Ebelt, S.T., A.J. Petkau, S. Vedal, et al., Exposure of chronic obstructive pulmonary disease patients to particulate matter: Relationships between personal and ambient air concentrations. Journal of the Air & Waste Management Association, 2000. 50(7): p. 1081-1094.
46.Rodes, C., P. Lawless, G. Evans, et al., The relationships between personal PM exposures for elderly populations and indoor and outdoor concentrations for three retirement center scenarios. JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY, 2001. 11(2): p. 103-115.
47.Williams, R., J. Suggs, J. Creason, et al., The 1998 Baltimore particulate matter Epidemiology-Exposure Study: Part 2. Personal exposure assessment associated with an elderly study population. JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY, 2000. 10(6): p. 533-543.
48.Janssen, N., G. Hoek, B. Brunekreef, et al., Personal sampling of particles in adults: Relation among personal, indoor, and outdoor air concentrations. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1998. 147(6): p. 537-547.
49.詹長權, 唐進勝.張立德., 台北縣微粒空氣污染對居民健康影響之研究 第一年度期末報告. 2004: 台北縣環保局.
50.Woo, K.S., D.R. Chen, D.Y.H. Pui, and P.H. McMurry, Measurement of Atlanta aerosol size distributions: Observations of ultrafine particle events. Aerosol Science and Technology, 2001. 34(1): p. 75-87.
51.Lung, S., K. Guo, P. Chen, et al., Participants'' exposure to PM2.5 and gaseous/particulate polycyclic aromatic hydrocarbons during the Ma-tsu Goddess parade. Journal of Exposure Analysis and Environmental Epidemiology, 2004. 14(7): p. 536-543.
52.Fang, G.C., C.N. Chang, Y.S. Wu, et al., Suspended particulate variations and mass size distributions of incense burning at Tzu Yun Yen temple in Taiwan, Taichung. Science of the Total Environment, 2002. 299(1-3): p. 79-87.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top