跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡光勵
研究生(外文):King-Ling Chien
論文名稱:都市垃圾焚化飛灰熔融過程金屬排放與腐蝕特性之研究
論文名稱(外文):The characteristic study of metal emission and corrosion in melting of municipal solid waste incineration fly ash
指導教授:江康鈺江康鈺引用關係
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:127
中文關鍵詞:焚化飛灰高溫熔融腐蝕重金屬鹽基度
外文關鍵詞:CorrosionHeavy metalIncinerator fly ashMeltingBasicity
相關次數:
  • 被引用被引用:7
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究嘗試利用熔融技術處理都市垃圾焚化飛灰,並摻配不同比例廢玻璃或淨水污泥,探討不同鹽基度對熔融處理系統中重金屬排放特性及耐火材之腐蝕影響。實驗結果顯示,在熔融操作溫度1,450℃及熔融持續時間2hr下,當鹽基度範圍在0.42∼1.53之間,焚化飛灰之減容比介於1.03∼5.61之間,而減重比介於1.02至1.50,顯示熔融處理具有相當之減容及減重效果。根據熔渣及熔融飛灰重金屬濃度分析,及利用濃縮比(concentrated ratio)及富集比(enrichment ratio)之計算結果可知,熔渣中Ca、Al、Cr、Fe、Ni及V有濃縮之現象;至於Na、K、Al、Cu、Zn、Cd、As、Pb、Se、Hg、Sr、Ba、Ag則為富集於熔融飛灰中。
重金屬在高溫處理下,會因添加劑改變及鹽基度的變化,均會影響其排放特性。在於熔融過程金屬分佈的相關性中,添加量的增加對於熔渣中Na、K、Al、Pb、V有增加之趨勢;至於在鹽基度0.4∼1.53間,增加鹽基度對於熔渣中、Mg、Ca、Si、Se、Sr、V有增加之趨勢。而對於腐蝕性物質(Cl-及SO42-),隨著添加劑比例的增加,熔融飛灰及廢氣中含量有減少之趨勢,而以鹽基度來看,鹽基度的增加,廢氣中的分佈比例有下降之趨勢。
The study investigates melting of fly ash from municipal solid waste incineration plant while considering the waste glass and/or sludge form water treatment plant as the amendments. Co-melting of fly ash and amendments for effects of basicity adjustment in characteristics of metals emission and corrosion were investigated. Experimental results showed that the volume reduction ratio and weight reducetion ratio of incineration fly ash in case of melting temperature 1450℃ and basicity range form 0.42 to 1.53, were1.03~5.61 and 1.02~1.50, respectively. According to above results indicated that the better efficiencies for volume and weight reduction in fly ash by melting. On the other hand, the concentrated ratio and enrichment ratio were calculated from metals concentrations of slag and melted fly ash. The characteristic results of metals in slag or melted fly ash showed that Ca, Al, Cr, Fe, Ni, V were always remained and concentrated in the slag and Na, K, Cu, Zn, Cd, As, Pb, Se, Hg, Sr, Ba, Ag were entrained and enriched in the melted fly ash.
The emission characteristics of metals were affected by the amendments and basicity variations in melting of incineration fly ash. In the case of correlation between metals metals partitioning and basicity, the partitioning of Na, K, Al, Pb, V in slag were increased with an increase of addition ratio of the tested amendments. Mean while, in the tested condition of basicity was between 0.4 to 1.53, the partitioning of Mg, Ca, Si, Se, Sr, V in slag were also increased with an increase of basicity. In the case of corrosive matter (Cl-and SO42-) the Cl-and SO42-in melted fly ash or flue gas were decreased with an increase of the tested amendments. Besides, the flue gas was also decreased as the basicity increased.
摘要.....................................................................Ⅰ
目錄.....................................................................Ⅲ
圖目錄...................................................................Ⅴ
表目錄...................................................................Ⅸ
第一章 前言..............................................................1
第二章 文獻回顧..........................................................4
2-1 國內垃圾焚化灰渣產生現況說明...............................4
2-2 焚化灰渣來源及種類.........................................8
2-3 熔融處理與操作條件.........................................10
2-3-1 熔融處理操作因子......................................11
2-4. 熱腐蝕理論................................................16
第三章 實驗材料與方法....................................................22
3-1 實驗材料...................................................22
3-2 實驗流程...................................................22
3-3 實驗設備及分析方法.........................................24
3-3-1 實驗設備..............................................24
3-3-2 實驗操作方法..........................................26
3-3-3 分析項目與方法........................................26
第四章 結果與討論........................................................29
4-1 研究材料基本性質分析.......................................29
4-1-1 物化特性分析結果......................................29
4-1-2 鹽基度與熔流溫度......................................33
4-2 熔渣特性分析...............................................37
4-2-1 熔渣外觀特性..........................................37
4-2-2 密度..................................................40
4-2-3 減容比................................................41
4-2-4 減重比................................................48
4-2-5 熔渣之顯微結構分析....................................46
4-2-6 熔渣及熔融飛灰之金屬濃度分析..........................48
4-3 熔融過程焚化飛灰之重金屬排放特性...........................52
4-3-1 主要金屬元素分佈特性變化..............................52
4-3-2 次要金屬元素分佈特性變化..............................68
4-3-3 微量金屬元素分佈特性變化..............................87
4-4 熔融過程材料腐蝕特性之初探................................103
第五章 結論與建議......................................................112
第六章 參考文獻........................................................114
Eighmy, T. T., Eusden, L. D., Krazanowski, J. E., Domingo, D., Stampfli, D., Martin, J., Erickson, P., “Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash”, Environmental Science and technology, 29, 3, pp. 629-646,1995.
Ecke, E., Sakanakura, H., Tanaka, N., Lagerkvist, A., “State-of-the-Art treament processes for municpal solid waste incineration residues in Japan”, Waste Management and Research, 18, pp. 41-51, 2000.
Eighmy., T. T., Crannell, B. S., Krzanowski, J. E., Bultler, L. G., Cartledge, F. K., Emery, E. F., Eusden, J. D., Shaw, E. L., Francis, C. A., “Characterization and phosphate of dusts from the vitrification of MSW combustion residues”, Waste Management, 18, pp.513-524, 1998.
Hirata, T., Morimoto, T., Ohta, S., Uchida, N., “Improvement of the corrosion resistance of alumina-chromia ceramic materials in molten slag”, Journal of European Ceramic Society, 23, pp. 2089-2096, 2003.
Kawahara, Y., “High temperature corrosion mechanisms and effect of alloying elements for materials used in waste incineration environment”, Corrosion Science, 44, pp. 223-245, 2002.
Makoto, H., Eiji, S., “Solidification of heavy metal-containing sludges by heating with silicate, toxic and hazardous waste disposal”, Ann Arbor Science, 3, pp.141-154, 1981.
Matsuto, C.H., Tanaka, N., “Behavior of metals in ash melting and gasification-melting of municipal solid waste(MSW)”, Waste Managenment, 25, pp.301-310, 2005.
Nielsen, H.P., Frandsen, F.J., Dam-Johansen, K., Baxter, L.L., “The implication of chlorine-associated corrosion on the operation of biomass-fired boilers”, Progress in Energy and Combustion Science, 26, pp. 283-298,2000.
Nakahara, K., Tada, M., Yamanoto, H., Shinagawa, T., Akashi, T., Tsurui, M., “Heavy metals recovery system for dust from NKK electric-resistance furnace”, NKK Technical Review, 84, 2001.
Park, Y.J., Heo, J., “Vitrication of fly ash from municipal solid waste incinertor”, Journal of Hazardous Materials, B91, pp.83-93, 2002.
Ramoškiene, E., Gladkovas, M., Šalkauskas, M., “Validation of salt spray corrosion test, Accred Qual Assur”, 8, pp. 235-241,2003.
Shinata, Y., “Accelerated oxidation rate of chromium induced by sodium chloride”, Oxid Met., 27, pp. 315, 1987.
Tzvetkoff, T.Z., Kolchakov, J., “Mechanism of growth, composition and structure of oxide films formed on ferrous alloys in molten salt electrolytes”, Materials Chemistry and Physics, 87, pp. 201-211, 2004.
Wiles,C.C., “Municipal solid waste combustion ash: State-of-the-knowledge”, Journal of Hazardous Material, 47, pp. 325-344, 1996.
Wang, K.S., Chiang, K.Y., Shao, B.C., “Melting of municpal solid waste and sewage sludge incinerator ssh: Study on fluid temperature and effects of melting-AIDS”, Toxicological and Environmental Chemistry, 61, pp. 69-81, 1997.
Zahs, A., Spiegel, M., Grabke, H.J., Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700℃, Corrosion Science, 42, 1093-1122, 2000.
王鯤生,「一般廢棄物焚化灰渣之有害物質特性研究」,行政院環保署委託報告,EPA-85-E3H1-09-02,1996。
村上忠弘、石田貴榮、林木和美、角田幸二,「下水污泥灰份的熔融特性關係考察」,下水道協會誌,第26卷,第296號,pp. 12-18,1989。
村上忠弘、石田貴榮、林木和美、角田幸二,「污泥熔融關係指標的檢討」,下水道協會誌,第26卷,第300號,pp. 32-47,1989。
化學工業部化工機械研究院,腐蝕理論、實驗及監測,化學工業出版社,pp. 191-193,1993。
江康鈺,王鯤生,「污泥熔融處理及資源再利用技術」,工業污染防治,第64卷,pp. 156-188,1997。
江慧嫻,「工業廢水污泥/淨水污泥共同熔融處理之基礎特性及資源化研究」,碩士論文,國立台灣大學環境工程研究所,台北,2001。
李元士,牛焱,吳維謏,「金屬材料的高溫氯化腐蝕,腐蝕科學與防護技術」,第12卷第1期,pp. 41-44,2000。
李釗,江少鋒,郭文田,「都市垃圾焚化灰渣做為混凝土細骨材之可行性研究」,一般廢棄物焚化灰渣資源化技術與實務研究會,pp.91-112,台北,1996。
馬志春,耐火材結構與性能,治金工業出版社,pp.153-162,1992。
郭益銘,「焚化灰渣玻璃化之評估研究」,,博士論文,國立成功大學環境工程系台南,2004。
黃奕叡,「廢棄物焚化灰渣熱熔之研究」,國立成功大學環境工程學系,碩士論文,台南,2002。
曾博榆,「都市垃圾焚化灰渣調質熔渣取代部分水泥之研究」,碩士論文,國立中央大學環境工程研究所,桃園,2002。
張旭彰,「都市垃圾焚化灰渣熔融處理操作特性之研究」,碩士論文,國立中央大學環境工程研究所,桃園,1992。
陳銘鋒,「熔融鹽腐蝕」,材料與社會,第41期,pp. 33-38,1990。
陳永翔,「焚化灰渣熔融及資源化處理之研究」,碩士論文,國立台北科技大學材料及資源工程系,台北,2001。
奧田聰,「工業防腐實務」,賴耿陽編譯,復漢出版社,pp. 106-134,1978。
詹炯淵,「垃圾焚化飛灰管理對策之研究」,碩士論文,國立台灣大學環境工程研究所,台北,2001。
趙永韜,吳建華,趙常救,「工業腐蝕監測的發展及其儀器的智能化」,腐蝕與防護,第21卷第11期,pp. 515-518,2000。
楊萬發,李穆生,「垃圾及其焚化飛灰之污染特性」,工程會刊,第一卷,第四期,pp. 52-65,1990。
廖錦聰,徐文慶,張蕙蘭,黃契儒,「焚化灰渣資源化研究」,工業技術研究院計畫報告,1996。
張祉祥,「都市垃圾焚化底灰燒結資源化之研究」,碩士論文,國立中央大學環境工程研究所,桃園,1999。
潘德華,「耐火材科學」,新文豐出版公司,1995。
蕭炳欽,「都市垃圾灰渣與下水污泥灰渣共同高溫熔融處理操作溫度特性之研究」,碩士論文,國立中央大學環境工程研究所,桃園,1993。
顧順榮,鍾昀泰,張木彬,「台灣地區都市垃圾焚化灰份中重金屬濃度及TCLP溶出之評估」,第十屆廢棄物技術研討會論文集,pp. 271-279,台南,1995。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top