跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 04:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹志豪
研究生(外文):Chih-Hao Tsao
論文名稱:廢輪胎資源化-脫硫菌篩選之初探
論文名稱(外文):Preliminary Studies of Renewable Resources of Waste Tyres by Biodesulfurization-Isolation of Bacteria and Application in Bioleaching for Waste Tyres Desulfurization
指導教授:胡苔莉胡苔莉引用關係
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:33
中文關鍵詞:脫硫菌再生膠
外文關鍵詞:recycle the rubbersulfur removing bacteria
相關次數:
  • 被引用被引用:2
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
廢輪胎堆積易孳生病媒蚊等環境衛生問題,本研究主要為利用生物技術去除廢輪胎中硫成分,以利再生膠之製造及資源回收之目的。自土壤中篩選出脫硫菌以回收廢輪胎中橡膠材料,18處土樣經積聚後篩選出二菌群(E與K)。經過連續5次之批次培養,從培養液之pH分別從7.10降至4.66 -5.70及SO4-2之濃度增加至3.56-4.16 mg/l,顯示pH之變化與SO4-2之形成有關。批次培養之廢輪胎碎片以掃瞄式電子顯微鏡觀察,發現約1-2 µm之桿菌分佈於廢輪胎碎片上,且細菌之分佈與SO4-2濃度之增減呈現相關,顯示SO4-2之形成係生物之作用。
廢輪胎碎片以淋洗方式連續處理90天,處理期間培養液中SO4-2之濃度有增加及下降之現象,SO4-2最高可達20.74 mg/L。當SO4-2濃度下降時更換培養基後,淋洗液中SO4-2濃度又會逐漸增加。經細菌分別處理30、60及90天廢輪胎碎片以能量散佈光譜儀分析顯示,未處理之廢輪胎碎片表面含硫量約為 2.50-2.78 % (w/w),經連續處理30天後之樣品表面含硫量為0.48-1.30 % (w/w),約去除了50 % 之硫,同時第一個月生物除硫量為最高;60天為0.32-0.72 % (w/w),90天為0.24-0.54 % (w/w)。
Eb菌為分離純化自E菌群,屬於G(-)桿菌。以Eb純菌批次培養處理廢輪胎碎片,經過4天培養液中之SO4-2最高可達3.77 mg/l,pH也由7.1降至4.71。純菌之脫硫能力較E與K菌群高。Eb菌可生長於含DBT (0.49 mM)之培養基中,然而SO4-2生成量與硫氧化菌Rhodococcus erythropolis D-1及Corynebacterium sp. strain P32C1相似。
Abstract
The pile of waste tires may result in environmental and hygienic problems, such as vectors. The object of this study is using biotechnology to remove the sulfur in the waste tires, and recycle the rubber. The sulfur removing bacteria were enriched and isolated from the soil to recycle the rubber materials of the waste tires. Two bacteria consortia (E and K) were screened from 18 soil samples collected from different areas, and grounded waste tires were used as the sole source of sulfur in the media. pH and SO4-2 of the cultural broth were monitored during 5 times of batch cultures, 3.56-4.16 mg/l of SO4-2 was observed, and the pH of the cultural broth dropped from 7.10 to 4.66-5.70, while the change of the pH was related to the formation of SO4-2. The biotreated waste tire fragments were observed with the scanning electron microscope and bacteria of 1-2 µm were distributed on the surface of waste tire particles. The amount of bacteria was correlated with the concentration of SO4-2 produced, indicating the formation of SO4-2 to be a biological phenominum.
The grounded waste tires were packed in a column and continuously leached with medium containing no sulfur for 90 days, SO4-2 was formed and reduced in a cyclic pattern, and the concentration of SO4-2 reached as high as 20.74 mg/L. When the concentration of the SO4-2 decreased, medium was replaced and the concentration of the SO4-2 would increase again. After being treated with the microconsortia of 30, 60, and 90 days, the grounded waste tires were analyzed with Energy Dispersive Spectrometers (EDS). The sulfur content of untreated waste tires was 2.50-2.78 % (w/w) that of waste tires treated with E consortium for 30 days was reduced to 0.48-1.30 % (w/w), about 50% reduction as compared to the untreated. The biological desulfurization was the highest in the first month, after 60 days was 0.32-0.72 % (w/w), and after 90 days was 0.24-0.54 % (w/w).
Eb was purified and isolated from the E consortium and belonged to G(-) rods. Eb were used to treat the waste tire fragments, and produced SO4-2 as high as 3.77 mg/l, pH dropped from 7.1 to 4.71, and showed better desulfurizing capability than that of E and K consortia. Eb could grow in medium containing DBT (0.49 mM), but the generation of SO4-2 was similar to that of Rhodococcus erythropolis D-1 and Corynebacterium sp. strain P32C1.
目錄
摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
圖表目錄 Ⅶ
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
1-3 研究內容 2
第二章 文獻回顧 3
2-1 橡膠之特性及應用 3
2-2 廢輪胎之生物分解 4
2-3 生物脫硫 5
2-3-1 廢輪胎之生物脫硫 7
第三章 材料與方法 8
3-1 材料 8
3-1-1 菌種分離源 8
3-1-2 廢輪胎碎片 8
3-1-3 培養基 8
3-1-3 淋洗管柱 9
3-2 方法 9
3-2-1 馴養積聚 9
3-2-2 批次培養 10
3-2-3 連續淋洗培養 11
3-2-4 脫硫菌純化 11
3-2-5 SO4-2之分析 11
3-2-6 電子顯微鏡之觀察 12
3-2-7 能量散佈光譜儀之分析 12
3-2-8 DBT之批次培養 12
第四章 結果與討論 13
4-1 輪胎脫硫菌之馴養積聚 13
4-2 輪胎脫硫菌之篩選-批次培養 13
4-2-1 E與K樣本之批次培養 13
4-2-2 純菌之批次培養 19
4-3 輪胎脫硫菌之連續淋洗培養 24
4-3-1 E與K樣本之連續培養 24
第五章 結論與建議 29
第六章 參考文獻 31


圖表目錄
圖2-1 硬化橡膠中之鍵結 4
圖2-2 DBT之脫硫機制 6
圖3-1 淋洗管柱設置 10
圖4-1 E與K樣本分別以批次振盪培養處理廢輪胎之情形 17
圖4-2 掃瞄式電子顯微鏡觀察E與K樣本批次處理廢輪胎碎片 18
圖4-3 Eb菌之外形 20
圖4-4 Eb菌以批次方式處理廢輪胎之情形 21
圖4-5 Eb菌以批次方式處理DBT之情形 22
圖4-6 掃瞄式電子顯微鏡觀察Eb菌批次處理廢輪胎碎片 23
圖4-7 E與K樣本連續處理廢輪胎之結果 26
圖4-8 掃瞄式電子顯微鏡觀察E與K樣本連續處理廢輪胎碎片 27
圖4-9 廢輪胎碎片經連續淋洗處理後表面含硫量之變化 28
表4-1 脫硫菌之積聚 14
參考文獻

陳家全,1991,生物電子顯微鏡學,行政院國科會精密儀器發展中心,新竹市。
童翔新,2002,輪胎資源化工廠評鑑計畫,環境保護署, EPA-90-HA31-03-A250,p. 1-4。
Berekaa, M. M., Linos. A., Reichelt, R., Keller, U. & Steinbuchel, A., 2000, Effect of pretreatment of rubber material on its biodegradability by varius rubber degrading bacteria, FEMS Microbial Lett., 184,199-206.
Bredberg K., Andersson B. E., Landfors E. & Holst O., 2002, Microbial detoxification of waste rubber materials by wood-rotting fungi, Bioresource. Technol., 83, p.221-224.
Brock T. D., Madigen M. T., Martinko J. M. & Parker J. (eds), 1994, Biology of Microorganisms, Prentice Hall, NJ. USA. p. 663-665.
Castorena G., Suarez C., Valdez I., Amador G., Fernandez L., & Borgne L. S., 2002, Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains, FEMS Microbial Lett., 215, p. 157-161.
Christiansson M., Stenberg B., Wallenberg L. R. & Holst O., 1998, Reduction of surface sulfur upon microbial devulcanization of rubber materials, Biotechnol. Lett., 20, p. 637-642.
Denome S. A., Christopher O., Lisa J. N. and Kevin D. Y., 1994, Characterization of the desulfurization genes from Rhodococcus sp. Strain IGTS8, J. Bacteriol., 176, p 6706-6716.
Donlan R. M., 2002, Biofilms: Microbial Life on Surfaces. Emerging Infectious Diseases, 8, No. 9.
Heisey R. M. & Papadatos S., 1995, Isolation of microorganisms able to metabolize purified natural rubber, Appl. Environ. Microbiol., 61(8), p.3092-3097.
Holst O., Stenberg B. & Christiansson M., 1998, Biotechnological possibilities for waste tyre-rubber treatment, Biodegradation, 9: p. 301-310.
Izumi Y., Ohshiro T., Ogino H., Hine Y. & Shimao M., 1994, Selective desulfurization of dibenzothiophene by Rhodococcus enythropolis D-1, Appl. Environ. Microbiol., 60(1), p. 223-226.
Jendrossek D., Tomasi G. & Kroppenstedt R. M., 1997, Bacterial degradation of natural rubber: a previlege of actinomycetes, FEMS Microbiol. Lett., 150, p.179-188.
Konishi J., Ishii Y., Onaka T., Okumura K. & Suzuki M., 1997, Thermophilic carbon-sulfur-bond targeted biodesulfurization, Appl. Environ. Microbiol., 63(8), p. 3164-3169.
Linos A., Reichelt R., Keller U. & Steinbuchel A., 2000, A gram-negative bacterium, identified as Pseudomonas aeruginosa AL98, is a potent degrader of natural rubber and synthetic cis-1,4-polyisoprene, FEMS Microbial Lett., 182, p.155-161.
Linos A., Berekaa M. M., Steinbuchel A., Kim K. K., Sproer C. & Kroppenstedt R. M., 2002, Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete, Int. Syst. Evol. Microbiol., 52, p.1133-1139.
Maghsoudi S., Kheirolomoom A., Mossoughi M. Tananka E. and Katoh S., 2000, Selective desulfuration od dibenzothiophene by newly isolated Corynebacterium sp. Strain P32C1, Biochem. Eng. J., 5, p 11-16.
Romine R. A. & Romine M. F., 1998, Rubbercycle: a bioprocess for surface modification of waste tyre rubber, Poly. Degrad. Stab., 59, p.353-358.
Shennan L., 1996, Microbial attack on sulphur-containing hydrocarbons:implications for the biodesulphurisation of oils and coals, J. Chem.Tech. Biotechnol., 67, p.109-123.
Thaysen A., Bunker H. & Adams M., 1945, ”Rubber Acid” damage in fire hoses, Nature, 155, p. 322-325.
Tsuchii A. & Takeda K., 1990, Rubber-degradation enzyme from a bacterial culture, Appl. Environ. Microbiol., 1, p. 269-274.
Tsuchii A., Takeda K. & Tokiwa Y., 1997, Degradation of the rubber in truck tires by a strain of Nocardia, Biodegradation, 7, p. 405-413.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top