跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊忠盛
研究生(外文):Yang-Chung Shang
論文名稱:建構以高曲率特徵為基礎的人臉偵測系統
論文名稱(外文):A Face Detection System Based on High Curvature Features
指導教授:辛正和
指導教授(外文):Cheng-Ho Hsin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:通訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:90
中文關鍵詞:Teager能量組合人工智慧支援向量機器(SVM)曲率模組正規化的方向通道人臉偵測
外文關鍵詞:Face detectionNormaliArtificial Intelligence
相關次數:
  • 被引用被引用:5
  • 點閱點閱:330
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:1
摘 要

由於人臉偵測系統因其在安全驗證系統、信用卡驗證、醫學、檔案管理、視頻會議、銀行提款機、系統公安(罪犯識別等)等方面的廣泛的應用而越來越成為當前身份識別和人工智慧領域的一個熱門的研究議題。
這個議題雖然已經討論很多年了,也有許多人提出了許多不同的方法和研究,也得到了不錯的成果,而再加上最近因安全性上的議題廣泛的討論如何認證身份的問題,因此人臉偵測廣泛的被重視,並且廣泛地應用在各種領域中。在本論文中,我們提出了一個以高曲率特徵為基礎的人臉偵測的方法,首先我們利用正規化的方向通道及Teager能量組合,並搭配曲率模組,使得對於影像的邊和線的特徵能更加準確的偵測到,然後利用19�e19大小的mask來掃描整張影像,再計算每一個mask的像素總和值,找出可能的人臉候選區的高曲率特徵區域,最後再經由支援向量機器(Support Vector Machine)的確認及認證,找到人臉的區域位置。
Abstract

Identity recognition plays a fundamental role in applications such as security verification,credit card identification,medical services,archive management,ATM services,and public security systems,etc.
Face detection has become one of the active research subjects in identity recognition. The purpose of this thesis is to develop a face detection system based on high curvature features. High curvature edges and lines are accurately detected by applying the normalized orientation channels and curvature module. The density of the curvature features at a given region is measured by a size of 19�e19 mask. The likely face regions are those of the high density of the curvature features. The probable face regions are verified with a support vector machine that is trained with face and non-face database. Experimental results are compared with other face detection schemes.
目 錄
摘 要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
第一章 緒論 1
1-1 簡介 1
1-2 研究背景與動機 2
1-3 研究目標 4
1-4 章節說明 4
第二章 人臉偵測的相關文獻回顧 5
2-1 人臉偵測 5
2-2 人臉偵測的各種方法 6
2-2-1 以知識為基礎的人臉偵測方法 6
2-2-2 以特徵為基礎的人臉偵測方法 7
2-2-3 以樣板為基礎的人臉偵測方法 12
2-2-4 以表象為基礎的人臉偵測方法 14
第三章 人臉特徵的偵測和研究的方法 20
3-1 系統架構流程 24
3-2 正規化的方向通道 25
3-2-1 高斯微分濾波器 26
3-3-2 區域灰度值調整方式 28
3-3-3 Teager能量組合 30
3-3 曲率模組 34
3-4 特徵擷取方法 37
3-5 支援向量機器(Support Vector Machine;SVM) 43
第四章 系統實作及實驗結果 49
4-1 人臉訓練樣本正規化處理 49
4-2 人臉訓練樣本資料庫之訓練流程 50
4-3 人臉驗證流程 57
4-3-1 SSIP資料庫 58
4-3-2 MIT CBCL資料庫 62
4-4實驗結果 67
4-5 與其他系統比較 75
第五章 結論及未來的發展 83
參考文獻 86
作者簡介 90
參考文獻

[1] G. Yang and T. S. Huang,” Human Face Detection in Complex Background ,” Pattern Recognition, vol.27,no.1,pp.53-63,1994.
[2] H. Rowley , S. Baluja , and T. Kanade,” Neural Network-Based Face detection ,” IEEE Trans. Pattern Analysis and Machine Intelligence , val. 20, no. 1,pp. 22-38, Jan. 1998.
[3] K. K. Sung and T. Poggio,“ Example-Based Learning for View-Based Human Face Detection,” Technical Report AI Memo 1521, Massachusetts Inst. Of Technology AI Lab , 1994.
[4] K. K. Sung and T. Poggio,“ Example-Based Learning for View-Based Human Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1,pp.39-51, Jan.1998.
[5] E. Osuna , R. Freund , and F. Girosi,“ Training Support Vector Machines: An Application to Face Detection,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.130-136,1997.
[6] Y. H. Tasi , Y. S. Huang and T. Poggio,“ Fast Face Detection Using Components,” Advanced Technology Center, Computer & Communications Research Lab. Industrial Technology Research Institute, Hsinchu , Taiwan, 2002.
[7] V. N. Vapnik,“ The Nature of Statistical Learning Theory,” New York: Springer-Verlag, 1995.
[8] P. Papageorgiou and M. Oren,” A General Framework for Object Detection,” Center for Biological and Computational Learning Artificial Intelligence Laboratory.
[9] H. A. Rowley , S. Baluja, and T. Kanade,“ Neural Network Based Face Detection,” IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 20, 1998.
[10] H. A. Rowley , S. Baluja , and T. Kanade,“ Rotational Invariant Neural Network – Based Face Detection,” in Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pp. 38-44, 1998.
[11] Y. Ma , X. Ding,” Face Detection Based on Hierarchical Support Vector Machines,” in State Key Laboratory of Intelligent Technology and System, Dept. of Electronic Engineering, Tsinghua University, Beijing.
[12] M. H. Yang,” Detecting Faces in Images: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 24, no. 1, pp. 34-58, 2002.
[13] R. L. Hsu,“ Face Detection in Color Images,” Student Member, IEEE, Mohamed Abdel-Mottaleb.
[14] I. Craw , H. Ellis , and J. R. Lishman,” Automatic Extraction of Face Features,” Pattern Recognition Letters, vol.5, pp.183-187, 1987.
[15] A. Yullie , P. Hallinan, and D. Cohen,” Feature Exaction from Faces using deformable templates,” International Journal of Computing Vision, vol.8, no.2, pp.99-111, 1992.
[16] H. Rowley , S. Baluja, and T. Kanade,” Rotation Invariant Neural Network-based Face Detection,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.23-38, Jan.1998.
[17] 王馨德,”建構於區域灰度值調整的影像特徵偵測法,”逢甲大學電子工程研究所碩士學位論文,2002。
[18] V. Vapnik , S. Golowich , and A. Smola,“ Support Vector method for function approximation,regression estimation,and signal processing ,” In M. Mozer,M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281-287, Cambridge, MA,1997.MIT Press.
[19] A. Haizhou , Y. Lihang , X. Guangyou,“ A Subspace Approach to Face Detection with Support Vector Machines,” Dept. of Computer Science and Technology, Tsinghua University, Beijing 100084, PR Cina.
[20] L. HyoungWoo , K. SeKee , H. Younghwan ,and H. SeungHong,” Automatic Face and Facial Features Detection,” Dept. of Electronic Engineering,Inha university, Yong-Hyun Dong,In-Chon, Korea, Division of Computer and Information Technology Sangji University.
[21] L. Fan and K. K. Sung,“ Face Detection and Pose Alignment Using Color, Shape and Texture Information,” School of Computing National University of Singapore.
[22] D. D. LE and S.’ichi Satoh,“ Feature Selection By AdaBoost For SVM-Based Face Detection,” The Graduate University for Advanced Studies National Institute of Informatics.
[23] M. O. Stitson, J. A .E. Weston , A. Gammerman, V .Vovk, V. Vapnik,” Theory of Support Vector Machines,” Department of Computer Science Egham, Surrey TW20 0EX, England.
[24] H. Rowley , S. Baluja and T. Kanade,“ Neural Network-Based Face Detection,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, January, 1998, pp. 23-38.
[25] D. Comaniciu , V. Ramosh, M. Simon and T. Boult,“ Component Fusion for Face Detection in the Presence of Heterosceastic Noise,” in Siemens Corporate Research 755 College Road East, Princeton, NJ 08540 , USA.
[26] B. Fröba , A.Ernst , and C. Küblbeck,“ Real-Time Face Detection,” in Department of Applied Electronics Fraunbofer Institute for Integrated Circuits Am Weichselgarten 3, D-91058 Erlangen, Germany.
[27] O. Jesorsky , K. J. Kirchberg , and R. W. Frischholz,” Robust face detection using the Hausdorff distance,” in Proc. 3rd Intl. Conf. Audio and Video based Biometric Person Authentication.
[28] H. A. Rowley , S. Baluja, and T. Kanade,” Neural Network-Based Face Detection,” IEEE Trans. Pattern Anal. Mach. Intell. 20, January 1998, 23-38.
[29] P. Viola and M. Jones, “Robust Real-Time Object Detection,” in Mitsubishi Electric Research Labs 201 Broadway,8th FL Cambrigde, MA 02139.
[30] O. Jesorsky , K. J. Kirchberg , and R. W. Frischholz , “Robust Face Detection Using the Hausdorff Distance,” in BioID AG, Berlin, Germany.
[31] N. Hoang ,“ Human Detection Using Neural Networks,” in Polish Academy of Sciences.
[32] O. Jesorsky , K. J. Kirchberg , and R. W. Frischholz,” Robust Face Detection Using the Hausdorff Distance,” in BioID AG, Berlin, Germany.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 饒見維(2001):九年一貫課程與教師專業角色的省思。教師天地,113期,7-13頁。
2. 鄭金昌、王宗進(2002):合作學習與傳統教學在排球技能學習效果比較之研究。中華體育,17卷2期,20-27頁。
3. 閩湘(1988):巧固球精神與體育教育。教師之友,29卷4期,32-34頁。
4. 熊明禮(1996):傳統學習教學法與合作學習教學法在飛盤擲遠教學效果之比較研究。大專體育,22期,48-60頁。
5. 陳蒂勻(2002):另類的體育課程-運動教育模式。屏師體育,6期,61-75頁。
6. 陳均姝(2000):角色扮演在輔導與諮商上的運用。學生輔導,68期,18-33頁。
7. 許義雄(2000):九年一貫「健康與體育」課程之發展與願景-從國際學校體育課程之改革談起。學校體育雙月刊,10期,10-11頁。
8. 張春秀(1996):體育課程之價值取向理論探討。中華體育,10卷1期,15-22頁。
9. 王雅萱(1997):Mosston’s體育教學光譜-互惠式之理論與實際。中華體育,11卷1期,32-41頁。
10. 房瑞文(1996):美國Jewett博士等人體育課程價值取向的介紹。中華體育,10卷2期,9-15頁。
11. 周禾程(1999):從人性尊嚴和自我實現的觀點談Mosston教學光譜之包含式。中華體育,12期5卷,14-20頁。
12. 汪慧瑜(2004):只有在COSPLAY時他才是快樂的。張老師月刊(6月份),122-125頁。
13. 李孟印、陳全壽(1998):巧固球訓練對國小學生大、小肌肉活動能力之影響。體育學報,26輯,273-280頁。
14. 李文田(1996):體育課程的設計模式與價值取。臺灣省學校體育,6卷5期,42-48頁。
15. 呂天得(1999a):體育教學的設計模式——運動教育模式之探討。國立體育學院論叢,9卷2期,161-175頁。