跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 19:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹峻嵩
研究生(外文):Chun-Sung Chan
論文名稱:CeO2及CuO的添加與製程條件對PZT壓電陶瓷特性的影響
論文名稱(外文):Effect of the addition of CeO2 and CuO , and process parameters on the characteristics of PZT ( Pb1-xSrx(Zr0.55Ti0.44Nb0.01)O3 ) ceramics
指導教授:林文豪林文豪引用關係
指導教授(外文):Wen-Hao Lin
學位類別:碩士
校院名稱:遠東技術學院
系所名稱:機械研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:168
中文關鍵詞:低溫燒結介電常數壓電特性
外文關鍵詞:low temperature sinteringdielectric constantpiezoelectric properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用Pb1-xSrx(Zr0.55Ti0.44Nb0.01)O3系(簡稱為PZT)壓電材料為對象,以CuO與CeO2作為低溫燒結添加劑。觀察其結果發現添加CuO具有促進PZT陶瓷的燒結能力,降低燒結溫度由1200降低到1000℃。
微量CuO的添加對燒結體的密度具有相當大的影響。於1000℃同樣的燒結溫度下其介電及壓電性質優於無添加物的材料。另外隨著CuO的添加量增加機電耦合因數(kr)與介電常數(K)比較以無添加劑的材料於1200℃的略微降低;但是於添加量0.3與0.5wt%有較佳的機械品質因數(Qm)值與損失因數(tan δe)值;壓電性質最佳點為CuO添加0.3wt%摻雜的PZT試片。CuO添加過程材料結晶相傾向於形成菱型晶型結構,晶粒大小隨著添加物增加而減小。
CuO與CeO2的添加對樣品燒結體密度與晶粒尺寸有著明顯的影響,另外,當提高CeO2的添加量則晶粒尺寸逐漸減小但是試片燒結體密度反而逐漸提高。根據XRD繞射結果意味著CeO2的添加具有提昇PZT高溫穩定性的功能,皆呈現為多晶型的鈣鈦礦結構。
Low temperature sintering of the ternary Pb1-xSrx(Zr0.55Ti0.44Nb0.01)O3 (abbreviated as PZT) ceramics was investigated using CuO and CeO2 as sintering additives. It was found that the addition of CuO significantly improved the sintering ability of PZT ceramics, resulting in a reduction of sintering temperature from 1200 to 1000 ℃. The density of sintered sample was strongly affected by small amounts of CuO addition. The dielectric and piezoelectric constants of PZT ceramics doped with CuO were higher than that of pure ones in the same sintering temperature, 1000 ℃. On the other hand, with the increasing of CuO addition, the electromechanical coupling factor (kr) and dielectric constant (K) were slightly decreased than that of pure ones in the sintering temperature 1200℃, but mechanical quality (Qm) and dielectric loss (tan δe) were optimized at 0.3 and 0.5 wt.% . The improvement of piezoelectric properties was maximized at various 0.3 wt% doped PZT samples.The materials are transformed from the tetragonal to the rhombohedral structure, and the grain sizes are decreased when additives are added.
The density and grain size of sintered sample was strongly affected by small amounts of CuO and CeO2 addition. On the other hand, with the increasing of CeO2 addition, grain size was decreased but density slightly increasing. From the X-ray diffraction analysis, significantly improved the thermal stable of PZT ceramics in high temperature, single phase of polycrystalline Perovskite was confirmed.
誌謝 ………………………………………………………………………i
中文摘要 …………………………………………………………………ii
Abstract………………………………………………………………iii
目錄 ………………………………………………………………………v
表目錄 ……………………………………………………………………ix
圖目錄 ……………………………………………………………………x
第一章 前言………………………………………………………………1
1-1 研究動機……………………………………………………………1
1-2 研究目的……………………………………………………………2
第二章 前人研究及理論基礎………………………………………3
2-1 壓電材料……………………………………………………………3
2-1-1 發展簡介…………………………………………………………3
2-1-2 壓電材料分類……………………………………………………4
2-2 壓電理論基礎………………………………………………………5
2-2-1 壓電的產生………………………………………………………5
2-2-2 壓電材料特性[1] ………………………………………………5
2-2-3 壓電材料常用的特性參數………………………………………6
2-3 PZT 壓電材料………………………………………………………10
2-4 PZT 三元系壓電材料………………………………………………11
2-5 低溫燒結PZT材料…………………………………………………12
2-5-1 低溫燒結的目的…………………………………………………12
2-5-2 低溫燒結的方法…………………………………………………13
2-5-3 使用添加劑的方法………………………………………………14
第三章 實驗方法與步驟 …………………………………………………23
3-1 使用材料………………………………………………………23
3-2 PZT陶瓷粉………………………………………………………23
3-2-1 PZT煆燒粉製備……………………………………………23
3-2-2 添加劑摻混粉……………………………………………………23
3-2-3 造粒………………………………………………………………24
3-2-4 樣品命名…………………………………………………………24
3-3 試片製作………………………………………………………25
3-3-1 試片成型 ………………………………………………………25
3-3-2 熱脫脂……………………………………………………………25
3-3-3 燒結………………………………………………………………25
3-3-4 電極製作…………………………………………………………26
3-3-5 試片極化…………………………………………………………26
3-4 性質檢測與分析………………………………………………26
3-4-1 晶相分析…………………………………………………………26
3-4-2 粒徑及微結構分析………………………………………………27
3-4-3 試片燒結體收縮率量測…………………………………………27
3-4-4 密度量測…………………………………………………………27
3-4-5 熱膨脹儀分析……………………………………………………28
3-4-6 熱示差/熱重( DTA / TG )分析………………………………28
3-4-7 電性量測及分析…………………………………………………28
第四章 實驗結果與討論 ……………………………………………33
4-1 材料特性……………………………………………………………33
4-1-1 PZT煆燒粉……………………………………………………33
4-1-2 研磨時間的影響………………………………………………33
4-1-3 添加劑……………………………………………………………34
4-2 試片生胚……………………………………………………………34
4-2-1 煆燒粉生胚……………………………………………………34
4-2-2 添加劑摻混之生胚………………………………………………36
4-3 熱示差/熱重(DTA/TG)分析…………………………………………37
4-3-1 煆燒粉……………………………………………………………38
4-3-2 CuO摻混的試片………………………………………………38
4-3-3 CuO搭配CeO2摻混的試片……………………………………39
4-4 熱膨脹儀(DIL)分析…………………………………………………40
4-4-1 煆燒粉試片………………………………………………………40
4-4-2 CuO摻混的試片………………………………………………41
4-4-3 CuO搭配CeO2摻混的試片……………………………………41
4-5 試片燒結性質………………………………………………………42
4-5-1 煆燒粉試片……………………………………………………42
4-5-2 CuO摻混的試片……………………………………………45
4-5-3 CuO搭配CeO2摻混的試片……………………………………50
4-6 壓電特性……………………………………………………………54
4-6-1 煆燒粉成型試片…………………………………………………54
4-6-2 CuO摻混的試片………………………………………………55
4-6-3 CuO搭配CeO2摻混的試片……………………………………57
第五章 結論與建議………………………………………………………160
5-1 結論…………………………………………………………………160
5-2 未來工作與建議…………………………………………………161
參考文獻 …………………………………………………………………163
自述 …………………………………………168
參考文獻
[1] 周卓明,壓電力學,全華科技圖書,中華民國, 1-4 ~ 1-9, 1993.
[2] L.L. Hench and J. K. West, “Principles of Electronic Ceramics”, New York, 273, 1990.
[3] B.S. Nalwa, “Handbook of Advanced Electronic and Photonic Materials and Devices”, vol.4, Ferroelectrics and Dielectrics, 175-177, 2001.
[4] B. Jaffe, W. R. Cook, Jr. and H. Jaffe, “Piezoelectric Ceramics” (Academic Press, London), Vol. 3, Chap. 6, 120, 1971.
[5] B. Noheda, D.E. Cox, G. Shirane. R. Guo, B. Jones and L.E. Cross, “Stability of The Monoclinic Phase in The Ferroelectric Perovskite PbZr1-xTixO3”, Phys. Rev. B 63, 014103, 9 Pages, 2001.
[6] G.Yi, Z. Wu and M. Sayer, “Preparation of Pb(Zr,Ti)O3 Thin Film
by Sol-Gel Processing Electrical, Optical and Electric-Optic Properties", J. Appl. Phys. Vol.64, 2714-2717, 1998.
[7] H. Kanai, O. Furukawa, H. Abe and Y. Yamashit, “Dielectric
Properties of Pb1-x(Zr0.7Ti0.3)O3 (x Ca, Sr, Ba) Ceramics”, J. Am.
Ceramic, Soc., 77, 26, 20, 1994.
[8] R.S. Nasar, M. Cerqueiraa, E. Longob, J.A. Varelac and A. Beltrand “Experimental and Theoretical study of the Ferroelectric and Piezoelectric Behavior of Strontium-Doped PZT”, The European Ceramic Soc., 22, 209-218, 2002.
[9] H. Zheng, I.M. Reaney, W.E. Lee, N. Jones and H. Thomas, “Effect of Strontium Substitution in Nb-doped PZT Ceramics”, The European Ceramic Soc., 21, 1371-1375, 2001.
[10] G.H.L. Wong, B.W. Chua, Lu Li and M.O. Lai “Processing of Thermally Stable Doped Perovskite PZT Ceramics”, Materials Processing Technology, 113, 450-455, 2001.
[11] D.N. Fang, and C.Q. Li, “Nonlinear Electric-Mechanical Behavior of a Soft PZT-51 Ferroelectric Ceramic”, J. Mater. Sci., 34, 4001-4010, 1999.
[12] K.R.M. Rao, A.V.P Rao, S.Komarneni, “Reactive PZT Precursor Powder by Coprecipitation”, Mater. Lett., 28, 463–467, 1996.
[13] H. Hirashima, E. Onishi and M. Nakagowa, “Preparation of PZT Powders from Metal Alkoxide”, J. Non-Cryst. Solids., 121, 404–406, 1990.
[14] T.R.N. Kutty and R. Balachandan, “Direct Preparation of Lead Zirconate Titanate by the Hydrothermal Method”, Mater. Res. Bull., 19, 1479–1488, 1984.
[15] R.F. Zhang, J. Ma, L.B. Kong, Y.Z. Chen and T.S. Zhang, “PZT Ceramics Derived from Hybrid Method of Sol-gel and Solid-state Reaction”, Materials Letters, 55, 388–393, 2002.
[16] M. Hiroshi, K. Osamu, S. Kazuo and O. Hiroshi, “Low Temperature Sintering of PZT Ceramics without Additives via an Ordinary Ceramic route”, The European Ceramic Soc., 25, 2383–2385, 2005.
[17] L.B. Kong, J. Ma, H. Huang and R.F. Zhang, “Effect of Excess PbO on Microstructure and Electrical Properties of PLZT7/60/40 Ceramics Derived from a High-Energy Ball Milling Process”, Alloys and Compounds, 345, 283-245, 2002.
[18] N.D. Patel and P.S. Nicholson, “Comparison of Piezoelectric Properties of Hot-Pressed and Sintered PZT”, Am. Ceram. Soc. Bull., 65, 783-787, 1986.
[19] P.G.Lucuta, F.Constantinescu, and D.Barb, “Structural Dependence on Sintering Temperature of Lead Zirconate-Titanate Solid Solutions”, J. Am. Ceram. Soc., 68, 533-537, 1985.
[20] R.B. Atkin, R.L. Holman, and R.M. Fulrath, “Substitution of Bi and Nb Ions in Lead Zirconate-Titanate”, J. Am. Ceram. Soc., 54, 113-115, 1971.
[21] S. Takahashi, “Sintering Pb(Zr,Ti)O3 Ceramics at Low Temperature”, Jpn. J. Appl. Phys., 19, 771-772, (1980).
[22] L. Li, X. Zhang, and J. Chai, “Low Temperature Sintering of PZT Ceramics”, Ferroelectrics, 101, 101-108, 1990.
[23] D.E. Wittmer, and R.C. Buchanan, “Low Temperature Densification of Lead Zirconate-Titanate with Vanadium Pentoxide Additive”, J. Am. Ceram. Soc., 64, 485-490, 1981.
[24] S.Y. Cheng, S.L. Fu, C.C. Wei and G.M. Ke, “The Properties of Low-Temperature fired Piezoelectric Ceramics”, Materials Sci., 21, 571-576, 1986.
[25] S.Y. Cheng, S.L. Fu and C.C. Wei, “Low-Temperature Sintering of PZT Ceramics”, Ceram. Int., 13, 223-231, 1987.
[26] R.T. Smith, G.D. Achenbach, R. Gerson and W.J. James, “Dielectric Properties of Solid Solution of BiFeO3 with Pb(Ti,Zr)O3 at Hight Temperature and High Frequency,” J. Appl. Phys., 39 [1], 70-74, 1998.
[27] T. Ikeda and T. Okano, “Piezoelectric Ceramics of Lead Zirconate- Titanate Modified by Bismuth Ferrite”, Jpn. J. Appl. Phys., 2, 63-64, (1963)
[28] K. Handa, T. Watanabe, Y. Yamashita, and M. Harata, “High Volume Efficiency Multilayer Ceramic Capacitor”, IEEE, Trans. Consum. Electron., CE-30, 342-347, 1984.
[29] A.F. Wells, “Complex Oxides”, Structural Inorganic Chemistry. Clarendon Press, Oxford, U.K., 482-87, 1975.
[30] D. Dong, M. Xiong, K. Murakami, and S. Kaneko, “Lowering of Sintering Temperature of Pb(Zr, Ti)O3 Ceramics by the Addition of BiFeO3 and Ba(Cu0.5W0.5)O3”, Ferroelectrics, 145, 125-133, 1993.
[31] D. Dong, K. Murakami, S. Kaneko and M. Xiong, Piezoelectric Properties of PZT Ceramics Sintered at Low Temperature with Complex-Oxide Additives”, J. Ceram. Soc. Jpn., 101, 1090-1094, 1993.
[32] S. Kaneko, D. Dong, and K. Murakami, “Effect of Simultaneous Addition of BiFeO3 and Ba(Cu0.5W0.5)O3 on Lowering of Sintering Temperature of Pb(Zr,Ti)O3 Ceramics”, J. Am. Ceram. Soc., 81, 1013-1018, 1998.
[33] B.M. Jin , D.S. Lee , I.W. Kim, J.H. Kwon, J.S. Lee, J.S. Song and S.J. Jeong, “The additives for improving piezoelectric and ferroelectric properties of 0.2Pb(Mg1/3Nb2/3)O3–0.8[PbZr O3–PbTiO3] ceramics” Ceramics International, 30, 1449–1451, 2004.
[34] Y.D. Hou, M.K. Zhu, H. Wang, B. Wang, H. Yan and C.S. Tian “Effects of CuO Addition on The Structure and Electrical Properties of Low Temperature Sintered Pb((Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80)O3 Ceramics”, Materials Science and Engineering, B, 110, 27–31, 2004.
[35] K. Chung, D. Lee, J. Yoo, Y. Jeong, H. Lee and H. Kang, “Piezoelectric Properties of Low-Temperature Sintering Pb(Co1/2W1/2)O3–Pb (Mn1/3Nb2/3)O3–Pb(Zr0.48Ti0.52)O3 Ceramics with The Sintering Temperature and The Amount of CuO Addition”, Sensors and Actuators, A, 121, 142–147, 2005.
[36] Y. Li, W. Chen, Q. Xu, J. Zhou, Y. Wang and H. Sun “Piezoelectric and Dielectric Properties of CeO2-Doped Bi0.5Na0.44K0.06TiO3 lead-free ceramics”, Ceramics International, CERI-2244, 9 Pages, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top