(3.238.186.43) 您好!臺灣時間:2021/03/02 10:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林万登
研究生(外文):LIN, WAN-TENG
論文名稱:精胺酸補充對衰竭運動引起大鼠氧化壓力及發炎反應之影響
論文名稱(外文):Effects of L-Arginine Supplementation on the Oxidative Stress and Inflammatory Response Induced by Exhaustive Exercise in Rats
指導教授:李寧遠;黃韶顏
指導教授(外文):LI, NING-YUAN; Shau-Yen Huang
學位類別:博士
校院名稱:輔仁大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:162
中文關鍵詞:精胺酸黃嘌呤氧化酶骨髓過氧化物酶細胞激素氧化壓力發炎反應衰竭運動
外文關鍵詞:L-arginineXanthine oxidaseMyeloperoxidaseCytokinesOxidative stressInflammatory responseExhaustive exercise
相關次數:
  • 被引用被引用:4
  • 點閱點閱:306
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
許多研究證實,激烈運動會誘發體內氧化壓力增加而產生大量活性氧自由基,而這些自由基的形成會造成體內脂質過氧化物產生及組織的損傷,並引起體內抗氧化系統的受損。因此,運動所引起之氧化壓力被認為和降低運動表現、肌肉疲勞、組織損傷、發炎反應及訓練過度有密切的相關性。目前至少有三個主要生化機制:粒線體電子傳遞鏈、黃嘌呤氧化酶(XO)及嗜中性白血球是運動產生自由基的來源。本研究旨在以精胺酸補充對衰竭運動引起大鼠氧化壓力及發炎反應之影響。實驗共分為兩個部分,實驗一將32隻SD大鼠(8週齡)隨機分為控制組及運動組,再將兩大組細分為控制組(C)、精胺酸組(C+Arg)、衰竭運動組(E)及精胺酸衰竭運動組(E+Arg)。實驗組餵食添加佔總熱量2%精胺酸(25g/Day)共計30天。運動組大鼠在跑步機從事單次激烈運動至衰竭,運動最後速度為30m/min,陡度為10%,其最大攝氧量約為75-80%;運動組平均跑步時間E組為81±4min及E+Arg為87±5min,兩組並未達到顯著差異。所有運動組織大鼠於衰竭運動後立刻予以犧牲,並對血液生化值及組織脂質過氧化物(MDA)、超氧化岐化酶(SOD)、過氧化氫酶(CAT)、麩胱甘肽過氧化酶(GPX)、麩胱肽過還原酶(GRD)及麩胱甘肽(GSH)之含量及活性加以分析。另外也針對XO及骨髓過氧化物酶(MPO)之活性來分析各組織承受氧化壓力及發炎之狀態。血漿中肌酸激酶(CK)、乳酸脫氫酶(LDH)、麩草酸轉胺基酶(GOT)、麩丙酮酸轉胺基酶(GPT)、乳酸、尿酸及一氧化氮之含量於衰竭運動組皆顯著高於控制組,而精胺酸衰竭運動組LDH之活性顯著低於衰竭運動組。此外,血漿中CK之活性及血乳酸的含量,精胺酸衰竭運動組與控制組間則未有顯著差異。衰竭運動組導致心臟、骨骼肌、肝臟、肺臟、腎臟及血漿中MDA的提昇並達顯著差異,然而精胺酸衰竭運動組可防止組織MDA的生成。衰竭運動組SOD之活性顯著提昇在心臟、骨骼肌、肝臟及肺臟,但在腎臟並未達顯著差異相較於控制組。精胺酸衰竭運動組SOD之活性並無顯著差異並略低於控制組。由此顯示精胺酸補充可降低因激烈運動誘發自由基的形成。而CAT及GPX之活性在衰竭運動組除了心臟與骨骼肌外,在肝臟、肺臟及腎臟並無顯著差異相較於控制組。衰竭運動組GRD之活性在骨骼肌及肺臟顯著提昇相較於控制組,然而在精胺酸衰竭運動組在心臟、肝臟及肺臟與控制組相較則無顯著差異。衰竭運動組會導致血漿及骨骼肌中GSH含量顯著下降,而精胺酸衰竭運動組在骨骼肌、肝臟、肺臟及腎臟中含量無顯著改變,僅在心臟之GSH含量顯著提昇相較於控制組。XO活性在血漿、心臟、骨骼肌、肝臟、肺臟及腎臟於衰竭運動組均達顯著提升。而針對運動誘發嗜中性白血球產生發炎現象之分析,其結果顯示衰竭運動組在心臟、骨骼肌、肝臟、肺臟及腎臟之MPO活性亦顯著提昇。然而精胺酸衰竭運動組可顯著下降XO及MPO活性在這些組織中相較於運動衰竭組。
實驗二動物之飼養、分組及運動處方同實驗一,於衰竭運動24小時後將老鼠犧牲,隨即收取老鼠腹腔沖洗液之巨噬細胞加以培養並以LPS刺激之,以測定促發炎細胞激素的分泌量。實驗二結果顯示衰竭運動組在24小時後腹腔沖洗液TNF-α及IL-6的含量顯著高於精胺酸衰竭運動組,而IL-1β兩組間則無顯著差異。然而,在以LPS刺激下,衰竭運動組TNF-α、IL-6及IL-1β濃度皆顯著高於精胺酸衰竭運動組。
綜合上述結果,精胺酸補充可降低因衰竭運動所產生之血乳酸含量堆積,並可減少在心臟、骨骼肌、肝臟、肺臟、腎臟及血漿中MDA的生成。而各組織大量激活的內生性抗氧化酵素對急性激烈運動所產生的氧化壓力有代償作用,以減緩激增之氧化壓力來防止可能對組織所產生的氧化損傷。由此推論精胺酸補充具有很好的抗氧化劑的功能,使這些酵素在衰竭運動後維持穩定狀態。精胺酸補充可以降低衰竭運動後各組織中XO及MPO活性之提昇。此外,精胺酸補充可降低相關促發炎激素的分泌,以減緩急性衰竭運動後初期產生的發炎現象。
Numerous studies have shown that strenuous exercise is to induce oxidative stress leading to reactive oxygen species (ROS). This increased generation of free radicals might cause to lipid peroxidation and tissue damage, more so under impaired antioxidant states. Thus, exercise-induce oxidative stress had been associated with decreased physical performance, muscular fatigue, tissue damage, inflammatory response and overtraining. At least three biochemical pathways, that is, mitochondrial electron transport chain, xanthine oxidase (XO), and polymorphoneutrophil have been identified as potential sources of intracellular free radical generation during exercise. The purpose of this study was to assess the effects o L-arginine (L-Arg) supplementation on the oxidative stress and inflammatory response induced by exhaustive exercise in rats. There were 2 experiments in this study. In exp1, thirty-two adult male Sprague-Dawley rats ( 8 weeks old ) , sedentary and exercise rats, were randomly divided into four subgroups: sedentary control (C), sedentary with L-Arg treatment (C+Arg), exhaustive exercise with control diet (E) and exhaustive exercise with L-Arg treatment (E+Arg). Rats in groups C+Arg and E+Arg were received a 2% L-Arg diet for 30 days (about 25g/day).Rats in groups E and E+Arg underwent a single bout of the strenuous exhaustion exercise on a motorized treadmill at a final speed of 30m/min, 10% grade, approximately 75-80% VO2max. Mean exercise duration was not significant difference between E and E+Arg rats (81±4min and 87±5min, respectively). All animals were anesthetized with ethyl ether and killed immediately after exhaustive exercise. Blood biochemistry parameters and malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) glutathione peroxidase (GPX), glutatione reductase(GRD) and glutathione (GSH) were investigated in this study. Also XO and myeloperoxidase (MPO) activity were assay in tissues for state of oxidative stress and inflammatory response. The activities of creatinine kinase (CK) and lactate dehydrogenase (LDH), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), lactate, uric acid and NOx levels in the plasma significantly increased in exercised rats compared to sedentary control. The activities of plasma LDH were significantly decreased in E+Arg rats compared to exercised rats. In addition, plasma of CK activity and lactate concentration were not significant difference in E+Arg rats compared to controls. Exercised rats significantly enhanced MDA levels in heart, skeletal muscle, liver, lung, kidney and plasma compared to control. However, there were prevented in E+Arg rats. SOD activity was significantly elevated in exercised rats in heart, skeletal muscle, liver and lung but not in kidney compared to control. SOD activity in -fed -L-Arg animals at rest and after exercise remained well below the control levels, indicating the decreased generation of oxygen free radicals in them. CAT and GPX activities were unchanged either by E group or by E+Arg rats in liver, lung and kidney, but not in heart and skeletal muscle compared to those in the controls. GRD activity was significantly elevated in E group in skeletal muscle and lung compared to control. However, it remained unchanged in heart, liver, lung and skeletal muscle in E+Arg group compared to control. GSH levels in the plasma and skeletal muscle significantly decrease in exercised rats compared with sedentary control. E+Arg rats reversed the trend in various tissues and significantly increased in heart compared with control. The activity of XO in heart, skeletal muscle, liver, lung, kidney and plasma significantly increased in exercised rats compared to control. Also, exercise-induced tissue inflammation and significantly elevated MPO activity in heart, skeletal muscle, liver, lung and kidney compared to control. However, L-Arg supplementation significantly reduced exercise-induced elevations of XO and MPO activities in various tissues compared to exercised rats. In exp2, rats grouping, feeding and exercise protocol were the same in exp1. Rats were scarificed 24 hours after exhaustive exercise, then the peritoneal macrophages were harvested and stimulated by lipopolysaccharide (LPS) to investigate the secretion of proinflammatory cytokines. Results in Exp2 demonstrated that tumor necrosis factor-(TNF-α) and interleukin (IL)-6 concentration in peritoneal lavage fluid at 24 hours after exercise in the E group were significantly higher than the E+Arg group, but not in IL-1β. However, the concentration of TNF-α, IL-6 and IL-1β secreted by LPS
stimulated peritoneal macrophages of the E group were significantly
elevated than the E+Arg group. In summary, the present data would suggest the L-Arg administration reduce exercise-induced increased in plasma lactate and protected against oxidative lipid damage in the heart, skeletal muscle, liver, lung, kidney and plasma caused by exhaustive exercise in rats. The higher activity levels of antioxidant enzyme as result of exercise might be indicative of a compensatory measure to counteract the possible detrimental effects associated with oxidative stress. L-Arg supplementation was able to favorably influence tissue antioxidant defenses at rest and in response to exercise. L-Arg reduced elevation of XO and MPO activities in heart, skeletal muscle, liver, lung and kidney of rats induced by exhausting exercise. In addition, L-Arg treatment resulted in a low inflammatory related cytokines in early inflammatory stage after exhaustive exercise.
第一章 緒言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
第一節 研究動機‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
第二節研究目的與假設‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5
一、單次激烈衰竭性運動後氧化壓力之差異‥‥‥‥‥‥‥‥5
二、單次激烈衰竭性運動後發炎反應及細胞激素分泌之差異‥5
三、單次激烈衰竭性運動後疲勞現象與能量代謝之差異‥‥‥6
第三節 本研究之重要性‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7
第二章 文獻探討‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥8
第一節 自由基與氧化壓力、氧化傷害及抗氧防禦機制‥‥‥‥8
一、自由基與氧化壓力 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥8
二、自由基氧化傷害與疾病‥‥‥‥‥‥‥‥‥‥‥‥‥‥11
三、抗氧防禦機制‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥11
(一)抗氧化營養素‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥11
1.維生素E ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥11
2.維生素C ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12
3. β-胡蘿蔔素 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥13
(二)體內抗氧化物質‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥15
(三)抗氧化酵素系統‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥16
第二節 運動與自由基生成途徑及氧化壓力的相關研究 ‥‥22
一、運動所導致自由基產生之途徑‥‥‥‥‥‥‥‥‥‥‥22
(一)粒線體電子傳遞鏈‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥22
(二)黃嘌呤氧化酶(xanthine oxidase, XO) ‥‥‥‥‥‥23
(三)嗜中性白血球骨髓過氧化酶(myeloperoxidae, MPO)24
二、運動強度與氧化傷害‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥27
三、運動所導致的氧化傷害‥‥‥‥‥‥‥‥‥‥‥‥‥‥28
四、發炎反應‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥34
五、運動與疲勞之探討‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥37
(一)造成中樞疲勞的機制‥‥‥‥‥‥‥‥‥‥‥‥‥‥37
(二)週邊疲勞機轉‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥37
1.能量耗竭‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥37
2.乳酸與肌肉疲勞‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38
3.自由基與離子代謝混亂機制‥‥‥‥‥‥‥‥‥‥‥‥38
第三節 精胺酸生成及生理代謝途徑‥‥‥‥‥‥‥‥‥‥‥40
一、精胺酸補充在生理醫學之抗氧化功能之研究 ‥‥‥‥40
(一)精胺酸與尿素代謝 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥40
(二)精胺酸與蛋白質合成 ‥‥‥‥‥‥‥‥‥‥‥‥‥40
(三)精胺酸與肌酸合成 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥40
(四)精胺酸與聚胺合成 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥41
(五)精胺酸與荷爾蒙分泌 ‥‥‥‥‥‥‥‥‥‥‥‥‥41
(六)精胺酸與免疫功能 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥41
(七)精胺酸與NO之生合成 ‥‥‥‥‥‥‥‥‥‥‥‥42
(八)精胺酸與抗氧化功能 ‥‥‥‥‥‥‥‥‥‥‥‥‥43
(九)服用精胺酸的安全性與副作用 ‥‥‥‥‥‥‥‥‥44
第四節 有關精胺酸補充在生理醫學上抗氧化功能之相關研究46
一、高血膽固醇症 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥46
二、吸煙 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥46
三、糖尿病 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥46
四、心血管疾病 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥47
五、肝病變 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥47
第五節 運動與一氧化氮之相關研究 ‥‥‥‥‥‥‥‥‥‥‥48
一、運動與NO之生成‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥48
二、運動與補充精胺酸之研究‥‥‥‥‥‥‥‥‥‥‥‥‥48
第三章 研究方法 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥50
【實驗一】‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥50
(一)實驗材料 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥50
1.實驗實驗動物之飼養與分組‥‥‥‥‥‥‥‥‥‥‥‥50
2.動物飼料之組成與配製‥‥‥‥‥‥‥‥‥‥‥‥‥‥50
(二)實驗分組‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥52
(三)大白鼠適應與衰竭運動之操作處方(Protocol)‥‥‥53
1.適應處方‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥53
2.衰竭運動處方‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥53
(四)分析項目與方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥55
(五)血液常規值之分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥55
1.各種血球的計數(complete blood cell count, CBC)‥‥‥55
2.各種白血球分類所佔的比例(Differential count for WBC, DC)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥56
(六)一般血液生化分析部分 ‥‥‥‥‥‥‥‥‥‥‥‥‥56
1.血液生化值之分析 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥56
(七)其他一般血液生化值之分析 ‥‥‥‥‥‥‥‥‥‥‥56
1.血漿中乳酸(lactate)濃度之分析‥‥‥‥‥‥‥‥‥‥56
2.血清中游離脂肪酸(non esterified fatty acid, NEFA)濃度
之分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥57
3.血清中D-3-羥基丁酸(D-3-hydroxybutyrate)濃度之分析58
4.血漿中一氧化氮(Nitric oxide, NO)之濃度‥‥‥‥‥‥58
(八)抗氧化相關分析部分 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥59
1.各組織中抗氧化酵素活性之分析 ‥‥‥‥‥‥‥‥‥‥59
(1)超氧化岐化酶(Superoxide dismutase, SOD)‥‥‥‥59
(2)過氧化氫酶(Catalase, CAT) ‥‥‥‥‥‥‥‥‥‥60
(3)麩胱甘肽過氧化酶(Glutathione peroxidase, GPX)‥61
(4)麩胱甘肽還原酶(Glutathione reductase, GRD) ‥‥61
2.各組織及血漿中抗氧化物質麩胱甘肽(Glutathione, GSH)
濃度之分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥62
3.脂質過氧化產物之分析 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥62
(1)血漿中脂質過氧化產物(Malondialdehyde,MDA)之
濃度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥62
(2)各組織中脂質過氧化產物(Malondialdehyde, MDA)
之濃度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥63
(九)血漿與各組織過氧化酵素XO活性‥‥‥‥‥‥‥‥63
(十)各組織中MPO活性 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥63
(十一)總蛋白質含量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥64
【實驗二】‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥64
一、收集腹腔沖洗液細胞‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥64
二、腹腔灌洗液部分(細胞激素濃度之測定)‥‥‥‥‥‥65
三、統計分析方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥66
第四章 結果 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥67
一、體重與運動衰竭時間‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥67
二、血液常規值之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥67
(一)血液中各種血球的計算結果‥‥‥‥‥‥‥‥‥‥‥67
(二)血液中各種白血球分類所佔比例的計算結果‥‥‥‥67
三、血液生化值之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥67
(一)血漿中脂質代謝‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥67
(二)白蛋白濃度變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥68
(三)血漿中葡萄糖、肌酸酐及尿素氮的濃度變化‥‥‥‥68
(四)血漿中乳酸的濃度變化‥‥‥‥‥‥‥‥‥‥‥‥‥68
(五)血漿中游離脂肪酸的濃度變化‥‥‥‥‥‥‥‥‥‥68
(六)D-3-羥基丁酸的濃度變化‥‥‥‥‥‥‥‥‥‥‥‥68
(七)尿酸的濃度變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥69
(八)血漿中各電解質離子的濃度變化‥‥‥‥‥‥‥‥‥69
(九)血漿中NO的濃度變化‥‥‥‥‥‥‥‥‥‥‥‥‥69
四、肝臟、心臟以及肌肉組織損傷指標‥‥‥‥‥‥‥‥‥69
五、體內抗氧化狀態之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥70
(一)血漿及各組織間脂質過氧化物之變化(MDA) ‥‥‥70
(二)血漿及各組織間抗氧化物質之變化(GSH)‥‥‥‥70
(三)各組織間抗氧化酵素之變化‥‥‥‥‥‥‥‥‥‥‥70
1.SOD活性之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥70
2.CAT活性之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥70
3.GPX活性之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥71
4.GRD活性之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥71
六、血漿與各組織中XO活性之變化‥‥‥‥‥‥‥‥‥‥71
七、體內發炎狀態之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥72
(一)CRP濃度之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥72
(二)MPO活性之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥72
(三)運動後24小時腹腔巨噬細胞培養液IL-6、TNF-α及
IL1-β之濃度 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥72
第五章 討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥119
一、衰竭運動對體內抗氧化狀態的影響 ‥‥‥‥‥‥‥‥119
(一)衰竭運動與血乳酸、XO及MDA之關係‥‥‥‥‥119
(二)衰竭運動與CK、LDH、GOT及GPT之關係 ‥‥‥120
(三)衰竭運動與NO形成之關係‥‥‥‥‥‥‥‥‥‥‥120
(四)衰竭運動與抗氧化酵素之關係‥‥‥‥‥‥‥‥‥‥121
(五)衰竭運動與GSH之關係 ‥‥‥‥‥‥‥‥‥‥‥‥122
二、衰竭運動與發炎反應‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥123
(一)衰竭運動與MPO之關係 ‥‥‥‥‥‥‥‥‥‥‥‥123
(二)衰竭運動與發炎細胞激素之分泌‥‥‥‥‥‥‥‥‥123
三、衰竭運動與能量代謝及抗疲勞狀態之關係‥‥‥‥‥‥124
(一)血糖‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥124
(二)乳酸‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥125
(三)D-3-hydroxybutyrate(酮體)‥‥‥‥‥‥‥‥‥‥‥125
(四)BUN與CRE ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥126
(五)自由基與離子代謝混亂機制‥‥‥‥‥‥‥‥‥‥‥126
第六章 結論與未來展望‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥128
參考文獻 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥129
附錄一 Effects of strenuous exercise on the immune system‥‥‥‥154

附錄二 衰竭運動組與精胺酸衰竭運動組各組織受損相關指標活性
之變化結果摘要表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥155
附錄三 衰竭運動組與精胺酸衰竭運動組各組織MDA濃度之變化
結果摘要表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥156
附錄四 衰竭運動組與精胺酸衰竭運動組各組織GSH濃度之變化
結果摘要表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥157
附錄五 衰竭運動組與精胺酸衰竭運動組各組織抗氧化酵素之變化
結果摘要表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥158
附錄六 衰竭運動組與精胺酸衰竭運動組各組織XO活性之變化結
果摘要表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥159
附錄七 衰竭運動組與精胺酸衰竭運動組各組織MPO活性之變化
結果摘要表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥160
附錄八 衰竭運動後24小時以LPS或無LPS刺激腹腔巨噬細胞培
養液IL-6、TNF-α和IL-1β濃度之變化結果摘要表‥‥‥161
附錄九 Postulated mechanism of action of arginine/nitric oxide on
macrophages and T-cell phenotypie expression and function‥162
表次
表一 運動與抗氧化劑補充抗氧化功能之相關研究摘要表‥‥‥‥14
表二 激烈運動與抗氧化酵素在各組織中之相關研究摘要表‥‥‥18
表三 激烈運動與脂質過氧化物在動物及人體各組織中之相關研究
摘要表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥30
表四 激烈運動與蛋白質過氧化物在動物及人體各組織中之相關研
究摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥32
表五 激烈運動與DNA氧化傷害在動物及人體各組織中之相關研
究摘要表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥33
表六 激烈運動與嗜中性球呼吸爆發之反應‥‥‥‥‥‥‥‥‥‥36
表七 實驗飼料組成‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥51
表八 各組大白鼠體重之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥73
表九 各組大白鼠衰竭運動之時間‥‥‥‥‥‥‥‥‥‥‥‥‥‥74
表十 各組大白鼠各種血球血液常規值之結果‥‥‥‥‥‥‥‥‥75
表十一 各組大白鼠各種白血球之分類比‥‥‥‥‥‥‥‥‥‥‥76
表十二 各組大白鼠血漿中TC、TG、LDL-C及HDL-C濃度之變化‥77
表十三 各組大白鼠其他血漿中生化項目濃度之變化‥‥‥‥‥‥78
表十四 各組大白鼠組織中SOD活性之變化‥‥‥‥‥‥‥‥‥‥79
表十五 各組大白鼠組織中CAT活性之變化‥‥‥‥‥‥‥‥‥‥80
表十六 各組大白鼠組織中GPX活性之變化‥‥‥‥‥‥‥‥‥‥81
表十七 各組大白鼠組織中GRD活性之變化‥‥‥‥‥‥‥‥‥‥82




圖次
圖一 運動所產生的適應性反應及組織之氧化傷害‥‥‥‥‥‥‥10
圖二 動物體內抗氧化防禦系統‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥21
圖三 骨骼肌形成自由基的途徑‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥26
圖四 精胺酸生成及生理代謝途徑‥‥‥‥‥‥‥‥‥‥‥‥‥‥45
圖五 衰竭運動之操作處方‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥54
圖六 各組大白鼠血漿中乳酸濃度之變化‥‥‥‥‥‥‥‥‥‥‥83
圖七 各組大白鼠血漿中游離脂肪酸濃度之變化‥‥‥‥‥‥‥‥84
圖八 各組大白鼠血漿中D-3-羥基丁酸濃度之變化‥‥‥‥‥‥‥85
圖九 各組大白鼠血漿中尿酸濃度之變化‥‥‥‥‥‥‥‥‥‥‥86
圖十 各組大白鼠血漿中NOx濃度之變化‥‥‥‥‥‥‥‥‥‥‥87
圖十一 各組大白鼠血漿中GOT活性之變化‥‥‥‥‥‥‥‥‥‥88
圖十二 各組大白鼠血漿中GPT活性之變化‥‥‥‥‥‥‥‥‥‥89
圖十三 各組大白鼠血漿中LDH活性之變化‥‥‥‥‥‥‥‥‥‥90
圖十四 各組大白鼠血漿中CK活性之變化‥‥‥‥‥‥‥‥‥‥‥91
圖十五 各組大白鼠血漿中脂質過氧化物濃度之變化‥‥‥‥‥92
圖十六 各組大白鼠心臟中脂質過氧化物濃度之變化‥‥‥‥‥93
圖十七 各組大白鼠骨骼肌中脂質過氧化物濃度之變化‥‥‥‥94
圖十八 各組大白鼠肝臟中脂質過氧化物濃度之變化‥‥‥‥‥95
圖十九 各組大白鼠肺臟中脂質過氧化物濃度之變化‥‥‥‥‥96
圖二十 各組大白鼠腎臟中脂質過氧化物濃度之變化‥‥‥‥‥‥97
圖二十一 各組大白鼠血漿中麩胱甘肽濃度之變化‥‥‥‥‥‥‥98
圖二十二 各組大白鼠心臟中麩胱甘肽濃度之變化‥‥‥‥‥‥‥99
圖二十三 各組大白鼠骨骼肌中麩胱甘肽濃度之變化‥‥‥‥‥‥100

圖二十四 各組大白鼠肝臟中麩胱甘肽濃度之變化‥‥‥‥‥‥‥101
圖二十五 各組大白鼠肺臟中麩胱甘肽濃度之變化‥‥‥‥‥‥‥102
圖二十六 各組大白鼠腎臟中麩胱甘肽濃度之變化‥‥‥‥‥‥‥103
圖二十七 各組大白鼠血漿中黃嘌呤酶活性之變化‥‥‥‥‥‥‥104
圖二十八 各組大白鼠心臟中黃嘌呤酶活性之變化‥‥‥‥‥‥‥105
圖二十九 各組大白鼠骨骼肌中黃嘌呤酶活性之變化‥‥‥‥‥‥106
圖三十 各組大白鼠肝臟中黃嘌呤酶活性之變化‥‥‥‥‥‥‥‥107
圖三十一 各組大白鼠肺臟中黃嘌呤酶活性之變化‥‥‥‥‥‥‥108
圖三十二 各組大白鼠腎臟中黃嘌呤酶活性之變化‥‥‥‥‥‥‥109
圖三十三 各組大白鼠血漿中C-反應蛋白濃度之變化‥‥‥‥‥110
圖三十四 各組大白鼠心臟中骨髓過氧化酶活性之變化‥‥‥‥‥111
圖三十五 各組大白鼠骨骼肌中骨髓過氧化酶活性之變化‥‥‥‥112
圖三十六 各組大白鼠肝臟中骨髓過氧化酶活性之變化‥‥‥‥‥113
圖三十七 各組大白鼠肺臟中骨髓過氧化酶活性之變化‥‥‥‥‥114
圖三十八 各組大白鼠腎臟中骨髓過氧化酶活性之變化‥‥‥‥‥115
圖三十九 衰竭運動後24小時以LPS或無LPS刺激腹腔巨噬細胞
培養液IL-6濃度之變化 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥116
圖四十 衰竭運動後24小時以LPS或無LPS刺激腹腔巨噬細胞
培養液TNF-α濃度之變化 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥117
圖四十一 衰竭運動後24小時以LPS或無LPS刺激腹腔巨噬細胞
培養液IL-1β濃度之變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥118
Adams AK & Best TM (2002) The role of antioxidants in exercise and disease prevention. Phys sportsmed 30, 37-44..
Alessio HM & Blasi ER (1997) Physical activity as a natural antioxidant booster and its effect on a healthy life span. Res Q Exerc Sport 64, 292-302.
Alessio HM & Goldfarb AH (1988) Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. J Appl Physiol 64, 1333-1336.
Alessio HM (1993) Exercise-induced oxidative stress. Med Sci Sports Exerc 25, 218-224.
Alessio HM, Goldfarb AH, Cao G & Cutler RG (1993) Short and long term vitamin C supplementation, exercise and oxygen radical absorption capacity(Absttract).Med Sci Sports Exerc 25, S79.
Alessio HM, Hagerman A, Fulkerson B, Ambrose J, Rice R & Wiley R (2000) Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc 32, 1576-1581.
Andrade FH, Reid MB, Allen DG & Westrtblad H (1998) Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from mouse. J Physiol(Lond.) 509, 565-575.
Asami S, Hirano T, Yamaguchi R, Itoh H & Kasai H (1998) Reduction of 8-hydroxydeoxyguanosine in human leukocytes DNA by physical exercise. Free Radic Res 29, 581-584.
Asuncion JGD, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J & Vina J (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10, 333-338.
Bailey SP, Davis JM & Ahlborn EN (1993) Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol 74, 3006-3012.
Balog EM, Thompson LV & Fitts RH (1994) Role of sarcolemma action potentials and excitability in muscle fatigue. Appl Physiol 76, 2157-2162.
Balon TW & Nadler JL (1997) Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 82, 359-363.
Bankson DD, Kestin M & Rifai N (1993) Role of free radicals in cancer and atherosclerosis. Clin Lab Med13, 463-480.
Bansal V & Ochoa JB (2003) Arginine availability, arginase, and the immune response. Cuur Opin Clin Nutr Metab Care 6, 223-228.
Barbul A (1986) Arginine, biochemistry, physiology and therapeutic implications. JPEN 10, 227-238.
Barbul A, Lazarou SA, Efron DT, Wasserkrug HL & Efron G (1990) Arginine enhances wound healing and lymphocyte immune responses in human. Surgery 108, 331-335.
Barbul A, Rettura G, Levenson SM & Seifter E (1977) Arginine:a thymotropic and wound-healing promoting agent. Surg Forum 28, 101-103.
Barbul A, Wasserkrug HL, Seifter E, Rettura G, Levenson SM & Efron G (1980) Immunostimulatory effects of arginine in normal and injured rats. J Surg Res 29, 228-235.
Barclay JK & Hansel M (1991) Free radicals may contribute to oxidative skeletal muscle fatigue. Can J Physiol Pharmacol 69, 279-284.
Bedford TG, Tipton CM, Wilson NC, Oppliger RA & Gisolfi CV (1979) Mzximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol 47, 1278-1283.
Beers RF Jr & Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195, 133-140.
Bejma J & Ji LL (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87, 465-470.
Belcastro AN, Arthur GD, Albisser TA & Raj DA (1996) Heart, liver, and skeletal muscle myeloperoxidase activity during exercise. J Appl Physiol 80, 1331-1335.
Bistrian BR, Schwartz J & Istfan NW (1992) Cytokines, muscle proteolysis, and the catabolic response to infection and inflammation. Proc Soc Exp Biol 200, 220-223.
Blaber AP, Walsh ML, Carter JB, Seedhouse EL & Walker VE (2004) Cardiopulmonary physiology and responses of ultramarathon athletes to prolonged exercise. Can J Appl Physiol 29, 544-563.
Boger RH, Bode-Boger SM, Mugge A, Kienke S, Brandes R, Dwenger A, Frolich J C (1995) Supplementation of hypercholesterolaemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production. Atheroscelerosis 117, 273-284.
Bohme GA, Bon C, Stutzmann JM, Doble A & Blanchard JC (1991) Possible involvement of nitric oxide in long-term potentiation. Eur J Pharmacol 199, 379-381.
Brady PS, Brady LJ & Ullrey DE (1979) Selenium, vitamin E and the response to swimming stress in the rat. J Nutr 109, 1103-1109.
Brines R, Hoffman-Goetz L &, Pedersen BK (1996) Can you exercise to make your immune system fitter? Immunol Today 17, 252-254.
Brittenden J, Heys SD, Millar I, Sarkar TK, Hutcheon AW, Needham G, Gilbert F, McKean M, Ah-See AK & Eremin O (1994b) Dietary supplementation with L-arginine in patients with breast cancer(>4cm)receiving multimodality treatment: report of a feasibility study. Br J Cancer 69, 918-921.
Brittenden J, Heys SD, Ross J, Park KGM & Eremin O (1994a) Natural cytotoxicity in breast cancer patients receiving neoadjuvant chemotherapy: effects of L-arginine supplementation. Eur J Surg Oncl 20, 467-472.
Brooks GA & White TP (1978) Determination of metabolic and heart rate responses of rats to treadmill exercise. J Appl Physiol 45, 1009-1015.
Bruunsgaard H, Galbo H, Halkjaer-Kristensen J, Johansen TL, MacLean DA & Pedersen BK (1997) Exercise-induced increase in serum interleukin-6 in human is related to muscle damage. J Physiol 499, 833-841.
Buczynski A, Kedziora J, Tkaczewski W & Wachowicz B (1991) Effect of submaximal physical exercise on antioxidative protection of human blood platelets. Int J Sport Med 12, 52-54.
Campisi R, Czernin J, Schoder H, Sayre JW & Schelbert HR (1999) L-arginine normalizes coronary vasomotion in long- term smokers. Circulation 99, 491-497.
Cannon J, Nerad J, Poutsiaka D & Dinarello C (1993) Measuring circulating cytokines. J Appl Physiol 75, 1897-1902.
Cannon JG & St Pierre BA (1998) Cytokines in exertion-induced skeletal muscle injury. Mol Cell Biochem 179, 159-167.
Cannon JG, Meydani SN, Fielding RA, Fiatarone MA, Meydani M, Farhangmehr M, Orencole SF, Blumberg JB & Evans WJ (1991) Acute phase response in exercise. II. Associations between vitamin E, cytokines, and muscle proteolysis. Am J Physiol Regulatory Integrative Comp Physiol 260, 1235-1240.
Chambers JC, McGregor A, Jean-Marie J, Obeid OA & Kooner JS (1999) Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: An effect reversible with vitamin C theraPY. Circulation, 99, 1156-1160.
Chance B, Sies H & Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59, 527-605.
Chapman PF, Atkins CM, Allen MT, Haley JE & Steinmetz JE (1992) Inhibition of nitric oxide synthesis impairs two different forms of learning. Neuroreport 3, 567-570.
Chen MF, Hsu H-C & Lee Y-T (1994) Effects of acute exercise on the changes of lipid profiles and peroxides, prostanoids, and platelet activation in hypercholesterolemic patients before and after treatment. Prostaglandis 48, 157-174.
Child RB, Wilkinson DM, Fallowfield JL & Donnelly AE (1998) Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half-marathon run. Med Sci Sports Exerc 30, 1603-1607.
Chow CK (1991) Vitamin E and oxidative stress. Free Radic Biol Med 11, 215-32. Review.
Cote CG, Yu FS, Zulueta JJ, Vosatka RJ & Hassoun PM (1996) Regulation of intracellular xanthine oxidase by endothelial-derived nitric oxide. Am J Physiol Lung Cell Mol Physiol 271, 869-874.
Criswell D, Powers S, Dodd S, Lawler J, Edwards W, Renshler K & Grinton (1993) High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc 25, 1135-1140.
Cui XL, Iwasa M, Iwasa Y, Ogoshi S (2000) Arginine-supplemented diet decreases expression of inflammatory cytokines and improves survival in burned rats. J Parenter Enter Nutr 24, 89-96.
Czarkowska-Paczek B, Bartlomiejczyk I, Gabrys T, Przybylski J, Nowak M & Paczek L (2005) Lack of relationship between interleukin-6 and CRP levels in healthy male athletes. Immunol Lett 99, 136-140.
Davies KJ, Quintanilha AT, Brooks GA & Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107, 1198-1205.
Dekkers C, Doornen LJPV & Kemper HCG. (1996) The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med 21, 213-238.
Deneke SM & Fanburg BL (1989) Regulation of cellular glutathione. Am J Physiol 257, 163-173.
Dikalov SI, Dikalova AE & Mason RP (2002) Noninvasive diagnostic tool for inflammation-induced oxidative stress using electron spin resonance spectroscopy and an extracellular cyclic hydroxylamine. Arch Biochem Biophys 402, 218-226.
Dillard CJ, Litov RE & Tappel AL (1978a) Effects of dietary vitamin E, selenium, and polyunsaturated fats on in vino lipid peroxidation in the rat as measured by pentane production. Lipids 13, 396-402.
Dillard CJ, Litov RE, Savin WM, Mumelin EE & Tappel AL (1978b) Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol 45, 927-932.
Downey JM (1990) Free radicals and their involvement during long-term myocardial ischemia-reperfusion. Annu Rev Physiol 52, 487-504.
Duthie GG, Robertson JD, Maughan RJ & Morrice PC (1990) Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch Biochem Biophys 282, 78-83.
Dziedziak W (1990) The effect of incremental cycling on physiological functions of peripheral blood granulocytes. Biology of Sport 7, 239-247.
Efron DT & Barbul A (1998) Modulation of inflammation and immunity by arginine supplements. Curr Opin Clin Nutr Metab Care 1, 531-538.
Evans CH, Stefanovic-Racic M & Lancaster J (1995) Nitric oxide and its role in orthopaedic disease. Clin Orthop 312, 275-294.
Evoy D, Lieberman MD & Fahey III TJ (1998) Immuonutrition: the role of arginine. Nutrition 14, 611-617.
Fallon KE (2001) The acute phase response and exercise: the ultramarathon as prototype exercise. Clin J Sport Med 11, 38-43.
Fallon KE, Broad E, Thompson MW & Reull PA (1998) Nutritional and fluid intake in a 100-km ultramarathon. Int J Sport Nutr 8, 24-35.
Fallon KE, Sivyer G, Sivyer K & Dare A (1999a) The biochemistry of runners in a 1600 km ultramarathon. Br J Sports Med 33, 264-269.
Fallon KE, Sivyer G, Sivyer K & Dare A (1999b) Changes in haematological parameters and iron metabolism associated with a 1600 kilometre ultramarathon. Br J Sports Med 33, 27-31.
Fang YZ, Yang S & Wu G (2002) Free radicals, Antioxidants, and Nutrition. Nutrition 18, 872-879.
Featherston WR, Rogers QR & Freedland RA (1973) Relative importance of kidney and liver in synthesis of arginine by the rat. Am J Physiol 224, 127-129.
Fielding RA, Manfredi TJ, Ding W, Fiatarone MA, Evans WJ & Cannon JG (1993) Acute phase response in exercise. III. Neutrophil and IL-1 beta accumulation in skeletal muscle. Am J Physiol Regulatory Integrative Comp Physiol 265, 166-172.
Fowles JR, Green HJ, Schertzer JD & Tupling AR (2002) Reduced activity of muscle Na+-K+-ATPase after prolonged running in rats. J Appl Physiol 93, 1703-1708.
Fraser SF, Li JL, Carey MF, Wang XN, Sangkabutra T, Sostaric S, Selig SE, Kjeldsen K & McKenna MJ (2002) Fatigue depresses maximal in vitro skeletal muscle Na+-K+-ATPase activity in untrained and trained individuals. J Appl Physiol 93, 1650-1659.
Frei B (1994) Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med 97, 5S-13S.
Fukahori M, Ichimori K, Ishida H, Nakagawa H & Okino H (1994) Nitric oxide reversibly suppresses xanthine oxidase activity. Free Radical Res 21, 203-212.
Giugliano D (2000) Dietary antioxidants for cardiovascular prevention. Nutr Metab Cardiovasc Dis 10, 38-44.
Giugliano D, Marfella R, Verrazzo G, Acampora R, Nappo F, Ziccardi P, Coppola L & D’Onoffrio F (1997) L-arginine for testing endothelium-dependent vascular functions in health and disease. Am J Physiol Endocrinol Metab 273, E606-E612.
Gohil K, Packer L, de Lumen B, Brooks GA & Terblanche SE (1986) Vitamin E deficiency and vitamin C supplements: exercise and mitochondrial oxidation. J Appl Physiol 60, 1986-1991.
Gottlieb K, Zarling EJ, Mobarhan S, Bowen P & Sugerman S (1993) Beta-carotene decreases markers of lipid peroxidation in healthy volunteers. Nutr Cancer 19, 207-212.
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS & Tannenbaum SR (1982) Analysis of nitrate, nitrite and﹝15N﹞nitrate in biological fluids. Anal Biochem 126, 131-138.
Gullino P, Birnbaum SM, Winitz M & Greenstein JP (1958) Studies on the metabolism of amino acids and related compounds in vivo. VII. Influence of the route of administration of L-arginine. HCI on protecting rats against ammonia toxicity. Arch Biochem Biophys 76, 430-438.
Hack V, Strobel G, Rau JP & Weicker H (1992) The effect of maximal exercise on the activity of neutrophil granulocytes in highly trained athletes in a moderate training period. Eur J Appl Physiol Occup Physiol 65, 520-524.
Haklar G, Ulukaya-Durakbasa C, Yuksel M, Dagli T & Yalcin AS (1998) Oxygen radicals and nitric oxide in rat mesenteric ischaemia-reperfusion: modulation by L-arginine and NG-nitro-L-arginine methyl ester. Clin Exp Pharmacol Physio 25, 908-912.
Hartmann A & Niess A (2000) Oxidative DNA damage in exercise. In: C. Sen, L. Packer & O. Hanninen, Editors, Handbook of oxidants and antioxidants in exercise, Elsevier, Amsterdam, pp.195–217.
Hartmann A, Niess AM, Grunert-Fuchs M, Poch B & Speit G (1995) Vitamin E prevents exercise-induced DNA damage. Mutation Res 346, 195-202.
Hartmann A, Pfuhler S, Dennog C, Germadnik D, Pilger A & Speit G (1998) Exercise-induced DNA effects in human leukocytes are not accompanied by increased formation of 8-hydroxy-deoxyguanosine or induction of micronuclei. Free Radic Biol Med 21, 245-251.
Hassoun PM, Yn FS, Zulueta JJ, White AC & Lanzilla JJ (1995) Effect of nitric oxide and cell redox status on the regulation of endothelial cell xanthine dehydrogenase. Am J Physiol Lung Cell Mol Physiol 268, 809-817.
Heigengauser GJF, Sutton JR & Jones NL (1983) Effect of glycogen depletion on ventilatory response to exercise. J Appyl Phyiol 52, 470-474.
Hellsten Y, Tullson PC, Richte E & Bangsbo J (1997) Oxidation of urate In human skeletal muscle during exercise. Free Radic Biol Med 22, 167-174.
Hellsten-Westing Y, Balsom PD, Norman B & Sjodin B (1993) The effect of high-intensity training on purine metabolism in man. Acta Physiol Scand 142, 273-281.
Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM & Granger DN (1987) Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am J Physiol 253, H699-H703.
Hessel E, Haberland A, Muller M, Lerche D & Schimke I (2000) Oxygen radical generation of neutrophils: a reason for oxidative stress during marathon running? Clin Chim Acta 298, 145-156.
Heunks LMA & Dekhuijzen PNR (2000) Respiratory muscle function and free radicals: from cell to COPD. Thorax 55, 704-716.
Higdon J (2003) Antioxidant vitamins and health: cardiovascular disease, cancer, cataracts, and aging: by Claude Fernand Bourgeois, 2003, 306 pages, hardcover, $72. HNB Publishing, New York. Am J Clin Nutr 80, 239.
Hoffman-Goetz L & Pedersen BK (1994) Exercise and the immune system: a model of the stress response? Immunol Today 15, 382-387.
Hurley BF, Nemeth PM, Martin 3rd HW, Hagberg JM, Dalsky GP & Holloszy JO (1986) Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 60, 562-567.
Hutchison K, Deedwania PC, Cooke JP, Glantz SA & Parmley WW (1999) Effects of L-arginine on atherogenesis and endothelial dysfunction due to secondhand smoke. Hypertension 34, 44-50.
Inayama T, Kumagai Y, Sakane M, Saito M & Matsuda M (1996) Plasma protein-bound sulfhydryl group oxidation in humans following a full marathon race. Life Sci 59, 573-578.
Itoh H, Ohkuwa T, Yamazaki Y, Shimoda T, Wakayama A, Tamura S, Yamamoto T, Sato Y & Miyamura M (2000) Vitamin E supplementation attenuates leakage of enzymes following 6 successive days of running training. Int J Sports Med 21, 369-374.
Jackson M (2000) Exercise and oxygen radical production by muscle. In: C. Sen, L. Packer & O. Hanninen, Editors, Handbook of oxidants and antioxidants in exercise, Elselvier, Amsterdam, pp. 57-68.
Jen CJ, Chan HP & Chen HI (2002) Chronic exercise improves endothelial calcium signaling and vasodilatation in hypercholesterolemic rabbit femoral artery. Arterioscler Thromb Vasc Biol 22, 1219-1224.
Jenkins RR & Goldfarb A (1993) Introduction: oxidant stress, aging, and exercise. Med Sci Sports Exerc 25, 210-212.
Jenkins RR (1988) Free radical chemistry: relationship to exercise. Sports Medicine 5, 156-170.
Ji LL & Fu R (1992) Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide, J Appl Physiol 72, 549-554.
Ji LL & Mitchell EW (1994) Effects of adriamycin on heart mitochondrial function in rested and exercised rats. Biochem Pharm 47, 877-885.
Ji LL & Mitchell EW (1994) Effects of adriamycin on heart mitochondrial function in rested and exercised rats. Biochem Pharmacol 47, 877-885.
Ji LL (1993) Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 25, 225-231.
Ji LL (1995) Oxidative stress during exercise: implication of antioxidant nutrients. Free Radic Biol Med 18, 1078-1086.
Ji LL (1999) Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 222, 283-292.
Ji LL, Dillon D & Wu E (1990) Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am J Physiol Regulatory Integrative Comp Physio 258, 918-923.
Ji LL, Gomez-Cabrera MC, Steinhafel N & Vina J (2004) Acute exercise activates nuclear factor (NF)-B signaling pathway in rat skeletal muscle. FASEB J 18, 1499-1506.
Ji LL, Startman FW & Lardy HA (1988b) Antioxidant enzyme systems in rat liver and skeletal muscle. Arch Biochem Biophys 263, 150-160.
Ji LL, Startman FW & Lardy HA (1992) Antioxidant enzyme response to selenium deficiency in rat myocardium. J Am Coll Nutrition 11, 79-86.
Ji LL, Stratman FW & Lardy HA (1988a) Enzymatic down regulation with exercise in rat skeletal muscle. Arch Biochem Biophys 263, 137-149.
Ji LL, Wu E & Thomas DP (1991) Effect of exercise training on antioxidant and rat skeletal muscle. Gerontology 37, 317-325.
Jungersten L, Ambring A, Wall B & Wennmalm A (1997) Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J appl physiol 82, 760-764.
Kaikkonen J, Kosonen L, Nyyssonen K, Porkkala-Sarataho E, Salonen R, Korpela H, & Salonen JT (1998) Effect of combined coenzyme Q10 and d-alpha-tocopheryl acctate supplementation on exercise-induced lipid peroxidation and muscular damage: a placebo-controlled double-blind study in marathon runners. Free Radic Res 29, 85-92.
Kanaley JA & Ji LL (1991) Antioxidant enzyme activity during prolonged exercise in amenorrheic and eumenorrheic athletes. Metabolism 40, 88-92.
Kanter MM, Nolte LA & Holloszy JO (1993) Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J Appl Physiol 74, 965-969.
Kawano H, Motoyama T, Hirai N, Kugiyama K, Yasue H & Ogawa H (2002) Endothelial dysfunction in hypercholesterolemia is improved by L-arginine administration: possible role of oxidative stress. Atherosclerosis 161, 375-380.
Kelly RA, Balligand JL & Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79, 363-380.
Klebanoff SJ (1980) Oxygen metabolism and the toxic properties of phagocyes. Ann Intern Med 93, 480-489.
Kokot K, Schaefer RM, Teschner M, Gilge U , Plass R & Heidland A (1988) Activation of leukcocytes during prolonged physical exercise. Adv Exp Med Biol 240, 57-63.
König D, Wagner KH, Elmadfa I & Berg A (2001) Exercise and oxidative stress: significance of antioxidants with reference to inflammatory, muscular, and systemic stress. Exerc Immunol Rev 7, 108-133.
Krinsky NI (1998) The Antioxidant and Biological Properties of the Carotenoids. Ann N Y Acad Sci 854, 443-447..
Kuipers H (1994) Exercise-induced muscle damage. Int J Sports Med 15, 132-135.
Laaksonen DE, Atalay M, Niskanen L, Uusitupa M, Hänninen O & Sen CK (1996) Increased resting and exercise-induced oxidative stress in young IDDM men. Diabetes Care 19, 569-574.
Lass A, Suessenbacher A, Wolkart G, Mayer B & Brunner F (2002) Functional and analytical evidence for scavenging of oxygen radicals by L-arginine. Mol. Pharmacol 61, 1081-1088.
Lawler JM, Powers SK, Visser T, Van Dijk H, Korduis MJ & Ji LL (1993) Acute exercise and skeletal muscle antioxidant and metabolic enzymes: effect of fiber type and age. Am J Physiol 265, 1344-1350.
Leeuwenburgh C, Leichtweis S, Hollander J, Fiebig R, Gore M & Ji LL (1996) Effect of acute exercise on glutathione deficient heart. Mol Cell Boichem 156, 17-24.
Leeuwengurgh C & Ji LL (1996) Alteration of glutathione and antioxidant status with exercise in unfed and refed rats. J Nutrition 126, 1833-1843.
Leichtweis SB, Leeuwenburgh C, Parmelee DJ, Fiebig R & Ji LL (1997) Rigorous swim training impairs mitochondrial function in post-ischaemic rat heart. Acta Physiol Scand 160, 139-148.
Lew H, Pyke S & Quintanilha A (1985) Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats. FEBS Lett 233, 262-266.
Lewis B & Langkamp-Henken B (2000) Arginine enhances in vivo immune responses in young, adult and aged mice. J Nutr 130, 1827-1830.
Lindinger MI, McKelvie RS & Heigenhauser GJ (1995) K+and Lac-distribution in humans during and after high-intensity exercise: role in muscle fatigue attenuation? J Appl Physiol 78, 765-777.
Liu J, Yeo HC, Overvik-Douki E, Hagen T, Doniger SJ, Chu DW, Brooks GA & Ames BN (2000) Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 89, 21-28.
Liu P, Hock CE, Nagele R & Wong PY (1997) Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol Heart Circ Physiol 272, 2327-2336.
Lovlin R, Cottle W, Pyke I, Kavanagh M & Belcastro AN (1987) Are indices of free radical damage related to exercise intensity. Eur J Appl Physiol Occup Physiol 56, 313-316.
Lubec B, Hayn M, Kitzmuller E, Vierhapper H & Lubec G. (1997) L-arginine reduces lipid peroxidation in patients with diabetes mellitus. Free Radic Biol Med 22, 355-357.
Macha M, Schlafer M & Kluger MJ (1990) Human neutrophil hydrogen peroxide generation following physical exercise. J Sports Med Phys Fitness 30, 412-419.
Marzatico F, Pansarasa O, Bertorelli L, Somenzini L & Valle G Della (1997) Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint trained athletes. J Sports Med Phys Fitness 37, 235-239.
Mastaloudis A, Leonard S & Traber M (2001) Oxidative stress in athletes during extreme endurance exercise. Free Rad Biol Med 31, 911-922.
Mastaloudis A, Morrow JD, Hopkins DW, Devaraj S & Traber MG (2004) Antioxidant supplementation prevents exercise-induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radic Biol Med 36, 1329-1341.
Maughan RJ, Donelly AE, Gleeson M, Whiting PH, Walker KA & Clough PJ (1989) Delayed-onset muscle damage and lipid peroxidation in man after a downhill run. Muscle Nerve 12, 332-336.
Maxwell AJ & Cooke JP (1998) Cardiovascular effects of L-arginine. Curr Opin Nephrol Hypertens 7, 63-70.
Maxwell AJ, Ho Hoai-Ky V, Le CQ, Lin PS, Bernstein D, and Cooke JP (2001) L-enhances aerobic exercise capacity in association with augmented nitric oxide production. J Appl Physiol 90, 933-938.
McBride JM, Kraemer WJ, Triplett-McBride T & Sebastianelli W (1998) Effect of resistance exercise on free radical production. Med Sci Sports Exerc 30, 67-72.
McCarthy DA & Dale MM (1988) The leucocytosis of exercise. A review and model. Sports Med 6, 333-363.
Medved I, Brown MJ, Bjorksten AR, Leppik JA, Sostaric S & McKenna MJ (2003) N-acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. J Appl Physiol 94, 1572-1582.
Meijer EP, Goris AH, Senden J, Dongen JL van, Bast A & Westerterp KR (2001) Antioxidant supplementation and exercise-induced oxidative stress in the 60-year-old as measured by antipyrine hydroxylates. Br J Nutr 86, 569-575.
Meister A & Anderson ME (1983) Glutathione. Ann Rev Biochem 52, 711-760.
Merimee TJ, Lillicrap DA & Rabinowitz D (1965) Effect of arginine on serum-levels of human growth-hormone. Lancet 2, 668-670.
Merimee TJ, Rabinowitz D, Riggs L, Burgess JA, Rimoin DL & McKusick VA (1967) Plasma growth hormone after arginine infusion. Clinical experiences New Engl J Med 276, 434-439.
Meydani M & Evans WJ (1993) Free radicals, exercise, and aging. In: Yu BP, Ed. Free Radicals in Aging. Boca Raton, FL: CRC Press, pp. 183-204.
Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V & Lattier G (2002) Alterations of neuromuscular function after an ultramarathon. J Appl Physiol 92, 486-492.
Mills PC, Marlin DJ, Scott CM & Smith NC (1999) Metabolic effects of nitric oxide synthase inhibition during exercise in the horse. Res Vet Sci 66, 135-138.
Moncada S & Higgs A (1993) The L-arginine nitric oxide pathway. N Engl J Med 329, 2002-2012.
Morgan DML & Wallace HM (1994) Polyamines in clinical and basic science: introductory remarks. Biochem Soc Trans 22, 845-846.
Moshage H, Kok B, Huizenga JR & PL Jansen (1995) Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 41, 892-896.
Mottram P, Shige H & Nestel P (1999) Vitamin E improves arterial compliance in middle-aged men and women. Atherosclerosis 145, 399-404.
Mullane KM, Kraemer R & Smith B(1985) Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 14, 157-167.
Nathan C & Xie QW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269, 13725-13728.
Navarro-Arevalo A, Canavate C & Sanchez-del-Pino MJ (1999) Myocardial and skeletal muscle aging and changes in oxidative stress in relationship to rigorous exercise training. Mech Ageing Dev 108, 207-217.
Neumayr G, Pfister R, Mitterbauer G, Maurer A & Hoertnagl H (2004) Effect of ultramarathon cycling on the heart rate in elite cyclists. Br J Sports Med 38, 55-59.
Nielsen HG, Hagberg IA & Lyberg T (2004) Marathon running leads to partial exhaustion of ROS-generating capacity in leukocytes. Med Sci Sports Exerc 36, 68-73.
Nieman DC, Henson DA, McAnulty SR, McAnulty L, Swick NS, Utter AC, Vinci DM, Opiela SJ & Morrow JD (2002) Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol 92, 1970-1977.
Niess AM, Sommer M, Schneider M, Angres C, Tschositsch K, Golly IC, Battenfeld N, Northoff H, Biesalski HK, Dickhuth HH & Fehrenbach E (2000) Physical exercise-induced expression of inducible nitric oxide synthase and heme oxygenase-1 in human leukocytes: effects of RRR-alpha-tocopherol supplementation. Antiox Redox Signal 2,113-126.
Nieves C Jr & Langkamp-Henken B (2002) Arginine and immunity: a unique perspective. Biomed Pharmacother 56, 471-482.
Node K, Kitakaze M, Sato H, Koretsune Y, Katsube Y, Karita M, Kosaka H & Hori M (1997) 79, 526-528.
Nonami Y (1997) The role of nitric oxide in cardiac ischemia-reperfusion injury. Jpn Circ J 61, 11-132.
Norman B, Sovelli A, Kaijser L & Jansson E (1987) ATP breakdown products in human muscle during prolonged exercise to exhaustion. Clin Physiol 7, 503-510.
Northoff HS & Enkel C (1995) Weinstock, Exercise, injury and immune function. Exerc Immunol Rev 1,1-25.
Ochoa JB, Strange FB, Kearney P, Gellin G, Endean E & Fitzpatrick E (2001) Effects of L-arginine on the proliferation of T lymphocyte subpopulations. J Parenter Enter Nutr 23, 436-449.
Ohno H, Sato Y, Yamashita K, Doi R, Arai K, Kondo T & Taniguchi N (1986) The effect of brief physical exercise on free radical scavenging enzyme systems in human red blood cells. Can J Physiol Pharmacol 64, 1263-1265.
Ostrowski K, Rohde T, Asp S, Schjerling P & Pedersen B (1999) Pro- and anti- inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515, 287-291.
Ostrowski K, Rohde T, Zacho M, Asp S & Pedersen BK (1998) Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol 508, 949-953.
Ostrowski K, Schjerling P & Pedersen BK (2000) Physical activity and plasma interleukin-6 in humans—effect of intensity of exercise. Eur J Appl Physiol 75, 467-769.
Ozcelikay AT, Tay A, Guner S, Tasyaran V, Yildzoglu-Ari N, Dincer UD & Altan VM (2000) Reversal effects of L-arginine treatment on blood pressure and vascular responsiveness od streptozotocin-diabetic rats. Pharmacol Res 41, 201-209.
Packer L (1991) Protective role of vitamin E in biological systems. Am J Clin Nutr 53, 1050-1055.
Palmer FM, Nieman DC, Henson DA, McAnulty SR, McAnulty L, Swick NS, Utter AC, Vinci DM, and Morrow JD (2003) Influence of vitamin C supplementation on oxidative and salivary IgA changes following an ultramarathon. Eur J Appl Physiol 89, 100-107.
Palozza P & Krinsky NI (1992) beta-Carotene and alpha-tocopherol are synergistic antioxidants. Arch Biochem Biophys 297, 184-187.
Pandian S, Amuthan V, Sukumar P, Janarthanan RA, Murugan S, Palanichamy S, Subramaniam G & Annamalai M (2005) Plasma CRP level predicts left ventricular function and exercise capacity in patients with acute myocardial infarction. Indian Heart J 57, 54-57.
Paolisso, Tagliamote MR, Marfella R, Verrazzo G, D’Onofrio F & Giugliano D (1997) L-arginine but not D-arginine stimulates insulin-mediated glucose uptake. Metabolism 46, 1068-1073.
Pavlovic D, Nikolic J, Kocic G., Stojanovic I & Jevtovic T (1998) Potential biochemical markers of beneficial effect of L-arginine action. J Hepatol 28, 223.
Peake J, Wilson G, Hordern M, Suzuki K, Yamaya K, Nosaka K, Mackinnon L & Coombes JS (2004) Changes in neutrophil surface receptor expression, degranulation, and respiratory burst activity after moderate- and high-intensity exercise. J Appl Physiol 97, 612-618.
Pedersen BK & Hoffman-Goetz L (2000) Exercise and the Immune System: Regulation, integration and adaptation. Physiol Rev 80, 1055-1081.
Pedersen BK & Ullum H (1994) NK cells response to physical activity, Possible mechanism of action. Med Sci Sports Exerc 26, 140-146.
Pegg AE & McCann PP (1982) Polyamines, metabolism and function. Am J Physiol 243, C212-C221.
Pegg AE, Matsui I, Seely JE, Pritchard ML & Poso H (1981) Formation of putrescine in rat liver. Med Biol 59, 327-333.
Pieper GM (1998) Review of alteration in endothelial nitric oxide production in diabetes. Hypertension 31, 1047-1060.
Pilger A, Germadnik D, Formanek D, Zwick H, Winkler N & Rudiger HW (1997) Habitual long-distance running does not enchance urinary excretion of 8-hydroxydeoxyguanosine. Eur J Appl Physiol 75, 467-469.
Poulsen HE, Loft S & Vistinsen K (1996) Extreme exercise and oxidative DNA modification. J Sports Sci 14, 343-346.
Powers SK, Criswell D, Lewler J, Ji LL, Martin D, Herb RA & Dudley G. (1994) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 226, R375-R380.
Pyne DB (1994) Regulation of neutrophil function during exercise. Sports Med 17, 245-258.
Pyne DB, Baker MS, Telford RD & Weidemann MJ (1993a) Neutrophil oxidative activity is differentially effected by moderate and intense interval exercise. Med Sci Sports Exer 25, S102.
Pyne DB, Telford RD, McDonald WA, Fricker PA & Nelson WJ (1993b) The effects of an intensive 16 week training cycle by elite seimminers on neutrophil oxidative activity. Proceeding of 1993 Annual Scientific Conference in Sports Medicine, Australian Sports Medicine Federation, Canberra.
Qian ZM, Xiao DS, Ke A & Liao QK (2001) Increased nitric oxide is one of the causes of changes of iron metabolism in strenuously exercised rats. Am J Physiol Regulatory Integrative Comp Physiol 280, R739-R743.
Quintanilha AT (1984) Effects of physical exercise and/or vitamin E on tissue oxidative metabolism. Biochem Soc Trans 12, 403-404.
Racek J (2004) Iron, free radicals and atherosclerosis. Vnitr Lek 50, 181-183.
Radak Z & Sataro G (1988) The effects of exercise, aging and caloric restriction on protein oxidation and DNA damage in skeletal muscle. In: Oxidative Stress in Skeletal Muscle. Reznik AZ, Packer L, Sen CK, Holloszy JO, and Jackson MJ(Eds.). Basel, Switzerland:Birkahuser.pp.89-93.
Radak Z, Asano K, Inoue M, Kizake T, Oh-Ishi S, Suzuki K, Taniguchi N & Ohno H (1995) Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J Appl Physiol 79, 129-135.
Radak Z, Asano K, Inoue M, Kizaki T, Ohishi S, Suzuki K, Taniguchi N & Ohno (1996) Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise. Eur J Paal Physiol Occ Physiol 72, 189-194.
Radak Z, Asano K, Lee KC, Ohno H, Nakamura A, Nakamoto H & Goto S (1997) High altitude training increases reactive carbonyl derivatives but not lipid peroxidation in skeletal muscles of rate. Free Radic Biol Med 22, 1109-1114.
Radak Z, Kaneko T, Tahara S, Nakamoto H, Ohno H, Sasvari M, Nyakas C& Goto S (1999a) The effect of exercise training on oxidative damage of lipids, proteins and DNA in rats skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med 27, 69-74.
Radak Z, Kaneko T, Tahara S, Nakamoto H, Pucsok J, Sasvari M, Nyakas C & Goto S (2001a) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Inter 38, 17-23.
Radak Z, Pucsok J, Mecseki S, Csont F & Ferdinandy P (1999b) Muscle soreness-induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle. Free Radic Biol Med 26, 1059-1063.
Radak Z, Pucsuk J, Boros S, Josfai L & Tatlor AW (2000) Changes in urine 8-hydroxydeoxyguanosine levels of super-marathon runners during a four-day race period. Life Sci 66, 1763-1767.
Radak Z, Sasvari M, Nyakas C, Taneko T, Tahara S & Goto S (2001b) Single bout fo exercise eliminates the immobilization-induced oxidative stress in rat brain. Neurochem Inter 39, 33-38.
Radak Z, Taylor AW, Sasvari M, Ohno H, Horkay B, Furesz J & Gaal D (2001c) Telomerase activity is not altered by regular strenuous exercise in skeletal muscle or sarcoma in liver of rats. Redox Report 6, 99-103.
Ranjan V, Xiao Z & Diamond SL (1995) Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol 269, 550-555.
Rasanen LA, Wiitanen PA, Lilius EM, Hyyppa S & Poso AR (1996) Accumulation of uric acid in plasma after repeated bouts of exercise in the horse. Comp Biochem Physiol B Biochem Mol Biol 114, 139-144.
Ravalec X, Le Tallec NL, Carre F, de Certaines JD & Rumeur EL (1996) Improvement of muscular oxidative capacity by training is associated with slight acidosis and ATP depletion in exercising muscles. Muscle Nerve 19, 355-361.
Reddy VK, Kumar CT, Prasad M & Redanna P (1992) Exercise-induced oxidative stress in the lung tissue: Role of dietary supplementation of vitamin E and selenium. Biochem Inter 26, 863-871.
Reeves PG, Nielsen FH & Fahey GC Jr (1993) AIN-93 purified diets for aboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123, 1939-1951.
Reid MB (1998) Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 162, 401-409.
Reid MB, Hacck KE, Franchek KM, Valbero PA, Kobzik L & West MS (1992) Reactive oxygen in skeletal muscle: I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol 73, 1797-1804.
Reznick A, Witt ZE, Matsumoto M & Packer L (1992) Vitamin E inhibits protein oxidation in skeletal muscle of resting and exercised rats. Biochem Biophys Res Commun 189, 801-806.
Reznick AZ, Steinhagen-Thiessen E, & Gershon D (1982) The effect of exercise on enzyme activities in cardiac muscles of mice of various ages. Biochem Med 28, 347-352.
Roberts CK, Barnard RJ, Jasman A & Balon TW (1999) Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol 277, 390-394.
Rokitski L, Logemann E, Sagredos A, Murphy M, Wetzel-Roth W & Keul J (1994) Lipid peroxidation and antioxidative vitamins under extreme endurance stress. Acta Physiol Scand 151, 149-158.
Rokitzki L, Logemann E, Huber G, Keck E & Keul J (1994a) alpha-tocopherol supplementation in racing cyclists during extreme endurance training. Int J Sport Nutr 4, 253-264.
Rokitzki L, Logemann E, Sagredos AN, Murphy M, Wetzel-Roth W & Keul J (1994b) Lipid peroxidation and antioxidative vitamins under extreme endurance stress. Acta Physiol Scand 151, 149-158.
Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M & Freeman BA (1994) Nitric oxide regulation of superoxide and peroxylnitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 269, 26066-26075.
Rybak LP, Ravi R & Somani SM (1995) Mechanism of protection by diethyldithiocarbamate against cisplatin ototoxicity: antioxidant system. Fundam Appl Toxicol 26, 293-300.
Saito H, Trocki O, Wang SL, Gonce SJ, Joffe SN & Alexander JW (1987) Metabolic and immune effects of dietary arginine supplementation after burn. Arch Surg 122, 784-789.
Salminen A, Kainulainen H & Vihko V (1984) Endurance training and antioxidants of lung. Experientia 40, 822-823.
Saxton JM, Donelly AE & Poper HP (1994) Indices of free-radical mediated damage following maximum voluntary eccentric and concentric muscular work. Eur J Appl Physiol 68, 189-193.
Scarfiotti C, Fabris F, Cestaro B & Giuliani A (1997) Free radicals, atherosclerosis, ageing, and related dysmetabolic pathologies: pathological and clinical aspects. Eur J Cancer Prev 6, S31-S36.
Schaefer A, Piquard F, Geny B, Doutreleau S, Lampert E, Mettauer B & Lonsdorfer J (2002) L-arginine reduces exercise-induced increase in plasma lactate and ammonia. Int J Sports Med 23, 403-407.
Schierwagen C, Bylund-Fellenius AC & Lundberg C (1990) Improved method for quantification of tissue PMN accumulation measured by myeloperoxidase activity. J Pharmacol Methods 23, 179-86.
Schmidt HH, Warner TD, Nakane M, Forstermann U & Murad F (1992) Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol Pharmacol 41, 615-624.
Schulz R, Dodge KL, Lopaschuk GD & Clanachan AS (1997) Peroxynitrite impairs cardiac contractile function by decreasing cardiac efficiency. Am J Physiol Heart Circ Physiol 272, 1212-1219.
Schuman EM & Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254, 1503-1506.
Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79, 675-686.
Sen CK (1999) Glutathione homeostasis in response to exercise training and nutritional supplements. Mol Cell Biochem 196, 31-42.
Sen CK (2001) Antioxidants in exercise Nutrition. Sports Med 31, 891-908.
Sen CK, Atalay M & Hanninen O (1994) Exercise-induced oxidative stress: glutathione supplementation and deficiency. J Appl Physiol 77, 2177-2187.
Sen CK, Atalay M, Agren J, Laaksonen DE, Roy S & Hänninen O (1997) Fish oil and vitamin E supplementation in oxidative stress at rest and after physical exercise. J Appl Physiol 83, 189-195.
Sen CK, Marin E, Kretzschmar M & Hanninen O (1992) Skeletal muscle and liver glutatheione homeostasis in response to training, exercise, and immobilization. J Appl Physiol 73, 1265-1272.
Sen CK & Packer L (2000) Thiol homeostasis and supplements in physical exercise. Am J Clinical Nutrition 72, 653 - 669.
Senturk UK, Gunduz F, Kuru O, Aktekin MR, Kipmen D, Yalcin O, Bor-Kucukatay M, Yesilkaya A & Baskurt OK (2001) Exercise-induced oxidative stress affects erythrocytes in sedentary rats but not exercise-trained rats. J Appl Physiol 91, 1999-2004.
Sessa WC, Pritchard K, Seyedi N, Wang J & Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74, 349-353.
Seward SW, Seiler KS & Starnes JW (1995) Intrinsic myocardial function and oxidative stress after exhaustive exercise. J Appl Physil 79, 251-255.
Shaheen KW, Punch JD, Rees RS et al. (1990) Early role of neutrophil in skin flap failue. Surg Forum 41, 553-555.
Shalin K, Ekberg K & Cizinsky S (1991) Changes in plasma hypoxanthine and free radical markers during exercise in man. Acta Physiol Scand 142, 273-281.
Shephard RJ & Balady GJ (1999) Exercise as cardiovascular therapy. Circulation 99, 963-972.
Shephard RJ, Rhind S & Shek PN (1995) The impact of exercise on the immune system: NK cells, interleukins 1 and 2, and related responses. Exerc Sport Sci Rev 23, 215-241.
Sheridan BC, Mcityre RC, Meldrum DR & Fullerton DA (1998) L-Arginine prevents lung neutrophil accumulation and preserves pulmonary endothelial function after endotoxin. Am J Physiol Lung Cell Mol Physiol 274, 337-342.
Shibuki K & Okada D (1991) Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349, 326-328.
Simpson R, Alon R, Kobzik L, Valeri CR, Shepro D & Hechtman HB (1993) Neutrophil and nonneutrophil-mediated injury in intestinal ischemia-reperfision. Ann Surg 218, 444-454.
Sjodin B, Westing YH & Apple FS (1990) Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med 10, 236-254.
Smith JA & Weidemann MJ (1990a) The exercise and immunity paradox: a neuro-endocrine/cytokine hypothesis. Med Sci Res 18, 749-753.
Smith JA, Telford RD, Mason IB & Weidemann MJ (1990b) Exercise, training and neutrophil microbicidal activity. Int J Sports Med 11, 179-187.
Smolka MB, Zoppi CC, Silveira LR, Marangoni S, Pereira-Da-Silva L, Novello JC, & Macedo DV (2000) HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol 279, R1539-R1545.
Somani SM, Frank S & Rybak LP (1995a) Responses of antioxidant system to acute and trained exercixe in rat heart subcellulart fractions. Pharmacol Biochem Behav 51, 627-634.
Somani SM, Ravi R & Rybak LP (1995b) Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol Biochem Behav 50, 635-639.
Suessenbacher A, Lass A, Mayer B & Mrunner F (2002) Antioxidative and myocardial protective effects of L-arginine in oxygen radical-induced injury of isolated perfused rat hearts. Naunyn-Schmiedeberg’s Arch Pharmacol 365, 269-276.
Sumida S, Doi T, Sakurai M, Yoshida Y & Okamura K (1997) Effect of a single bout of exercise and beta-carotene supplementation on the urinary exertion of 8-hydroxydeoxyguanosine in humans. Free Radic Res 27, 607-618.
Sumida S, Tanaka K, Kitao H & Nakadomo F (1989) Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int J Biochem 21, 835-838.
Suzuki K, Sato H, Kikuchi T, Abe T, Nakaji S, Sugawara K, Totsuka M, Sato K, & Yamaya K (1996) Capacity of circulating neutrophils to produce reactive oxygen species after exhaustive exercise. J Appl Physiol 81, 1213-1222.
Suzuki K, Yamada M, Kurakake S, Okamura N, Yamaya K, Liu Q, Kudoh S, Kowatari K, Nakaji S & K Sugawara (2000) Circulating cytokines and hormones with immunosuppressive but neutrophil-priming potentials rise after endurance exercise in humans Eur J Appl Physiol 81, 281-287.
Tabatabaie T, Vasquez-Weldon A, Moore DR & Kotake Y (2003) Free radicals and the pathogenesis of type 1 diabetes: -cell cytokine-mediated free radical generation via cyclooxygenase-2. Diabetes 52, 1994-1999.
Tiidus P & Houston ME (1993) Vitamin E status does not affect the responses to exercise training and acute exercise in female rats. J Nutrition 123, 834-840.
Tiidus PM, Pushkarenko J & Houston ME (1996) Lack of antioxidation adaptation to short-term aerobic training in human muscle. Am J Physiol Regulatory Integrative Comp Physiol 271, 832-836.
Till GO, Beauchamp C, Menapace D, Tourtellotte W Jr, Kunkel R, Johnson KJ & Ward PA (1983) Oxygen radical dependent lung damage following thermal injury of rat skin. Trauma 23, 269-277.
Till GO, Guilds LS, Mahrougui M, Friedl HP, Trentz O & Ward PA (1989) Role of xanthine oxidase in thermal injury of skin. Am J Pathol 1135, 195-202.
Ting HH, Timimi FK, Boles KS, Craeger SJ, Ganz P, Craeger MA (1996) Vitamin C improves endothelium-dependent diabetes mellitus. J Clin Invest 97, 22-28.
Trueba GP, Sanchez GM & Giuliani A (2004) Oxygen free radical and antioxidant defense mechanism in cancer. Front Biosci 9, 2029-2044.
Turcotte LP, Richter EA & Kiens B (1992) Increased plasma ffauptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Physiol Endocrinol Metab 262, E791-799.
Vedder NB, Bucky LP, Lopez I & May JW (1991) Inhibition of neutrophil adherence improves survival of random flaps in rabbits. Surg Forum 42, 619-620.
Venditti P & Meo SD (1996) Antioxidants, tissue damage, and endurance in trained and untrained young male rats. Arch Biochem Biophys 331, 63-68.
Videk WJ (1986) Arginine needs, physiological state and unusual diets, a reevaluation. J Nutr 116, 36-46.
Viguie CA, Frei B, Shigenaga MK, Ames BN, Packer L & Brooks GA (1993) Antioxidant status and indexes of oxidative stress during consecutive days of exercise. J Appl Physiol 75, 566-572.
Vina J, Gimeno A, Sastre J, Desco J, Asensi M, Pallardo FV, Cuesta A, Ferrero JA, Terada LS & Repine JE (2000) IUBMB Life 49, 539-544.
Wallner S, Hermetter A, Mayer B & Wascher TC (2001) The alpha-aminogroup of L-arginine mediates its antioxidant effect. Eur J clin Invest 32, 98-102.
Wascher TC, Posch K, Wallner S, Hermetter A, Kostner GM & Graier WF (1997) Vascular effects of L-arginine : Anything beyond a substrate for the NO-synthase. Biochem Biophys Res Commun 234, 35-38.
Westerfeld WW, Richert DA & Higgins ES (1959) Further studies with xanthine oxidase inhibitors. J Biol Chem 234, 1897-1900.
Westing YH, Ekblom B & Sjodin B (1989) The metabolic relation between hypoxanthine and uric acid in man following maximal short-distance running. Acta Physiol Scand 137, 341-345.
Willis WT & Jackman MR (1994) Mitochondrial function during heavy exercise. Med Sci Sports Exerc 26, 1347-1353.
Woodman CR, Muller JM, Laughlin MH & Price EM (1997) Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Am J Physiol Heart Circ Physiol 273, H2575-H2579.
Wu HJ, Chen KT, Shee BW, Chang HC, Huang YJ & Yang RS (2004) Effects of 24 h ultra-marathon on biochemical and hematological parameters. World J Gastroenterol 10, 2711-2714.
Xiao DS, Jiang L, Che LL & Lu L (2003) Nitric oxide and iron metabolism in exercised rat with L-arginine supplementation. Mol Cell Biochem 252, 65-72.
Yang AL, Tsai SJ, Jiang MJ, Jen CJ & Chen HI (2002) Chronic exercise increases both inducible and endothelial nitric oxide synthase gene expression in endothelial cells of rat aorta. J Biomed Sci 9, 149-155.
Yokoyama Y, Beckman JS, Beckman TK, Wheat JK, Cash TG, Freeman BA & Parks DA (1990) Circulating xanthine oxidase: potential mediator of ischemic injury. Am J Physiol 258, G564-570.
林正常、林貴福、徐台閣、吳慧君(2002)運動生理學。台北:藝軒。
徐台閣(1998)高強度耐力運動訓練對免疫功能的影響。台灣師範大學體育研究所博士論文。
許振富、吳文騫、徐廣名、徐台閣(2004)馬拉松競賽後血漿中發炎因子濃度的變化。93年體育學術研討會專刊。381-388。
謝錦城(1997)人體骨骼抗氧化系統對於耐力運動與訓練的反應。中華民國大專院校體育總會八十六年度體育學術研討會專刊8:382-399。
謝錦城、許壬榮、呂學冠、廖威彰、劉燦榮(1998)衰竭運動對老鼠紅血球脂質過氧化物、變形性型態學的影響。中華民國大專院校八十七年度體育學術研討會專刊(上)17-27。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔