跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊順景
研究生(外文):Shen Ching Yang
論文名稱:具零電壓切換之模糊控制邱克雙向鋰離子電池等化器
論文名稱(外文):Fuzzy Logic Controlled Lithium-Ion Battery Equalization Using Bi-direction Cûk Converter in ZVS Operation
指導教授:李永勳
指導教授(外文):Yuang Shung Lee
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:74
中文關鍵詞:雙向邱克轉換電路電感電流連續模式電感電流不連續電容電壓不連續零電壓切換零電流切換模糊控制
外文關鍵詞:Cuk converterCICMDICMDCVMZVSZCSFLC-BECFuzzy logic control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出利用傳統的邱克(Cûk)轉換電路來設計成雙向直流對直流轉換的電池等化器,並且能操作在電感電流連續、電感電流不連續和電容電壓不連續模式所產生的零電壓和零電流之切換技術,以減少開關的切換功率損失,提升整體的等化效率。經由建構出數學模型的模擬與硬體電路的實驗結果,驗證我們所提出的等化系統,不僅可以達到等化的效果,在開關切換時還具有零電壓或是零電流的效果,可以減少切換損失,但由於零電壓與零電流切換的方法,其相對每次轉移的能量較少,導致等化時間延長,為了縮短等化的時間,本文中也提出以模糊控制的方法,讓控制器可以根據不同的等化狀況,來增加電池等化的速度,並且兼具電池過充和過放電保護的功能,減少電池老化及損壞,提高鋰電池壽命。
The contents of this paper proposed the bi-direction Cûk DC-DC converter that is derived from the concept of traditional Cûk converter. The converter is able to operate in zero voltage switching (ZVS) and zero current switching (ZCS) technical that resulted from continuous inductor current mode (CICM), discontinuous inductor current mode (DICM) and discontinuous capacitor voltage mode (DCVM) to reduce switching losses and increase the efficiency of the converter. The charging and discharging characteristics of the batteries are non-linear and the mathematical model of battery extremely complex, so that is difficult to describe. The fuzzy logic control battery equalization controller (FLC-BEC) abridges the equalization time about 32% compare to the equalizer without FLC. Per the results of simulation and experiment, the equalization scheme is able to reduce the equalization time and prevent the battery to operate into the over-charging or the over-discharging region.
中文摘要....................................................i
英文摘要...................................................ii
誌謝......................................................iii
目錄.......................................................iv
表目錄.....................................................vi
圖目錄....................................................vii
第一章 緒論.............................................. 1
1.1前言.............................................. 1
1.2鋰離子電池特性簡介.................................. 1
1.3電池等化器簡介...................................... 2
1.4電池等化器的模糊控制策略............................. 3
1.5研究內容........................................... 3
第二章 鋰離子電池串的特性與保護............................. 4
2.1前言.............................................. 4
2.2個別單元電池並接等化................................ 4
2.2.1消耗型電池等化器.............................. 4
2.2.2非消耗型電池等化器............................ 5
2.3就近型電池等化...................................... 6
2.3.1切換式電容電池等化............................ 6
2.3.2諧振型電池等化................................ 7
2.3.3雙向直流轉換器電池等化......................... 8
2.3.4集中式變壓器電池等化.......................... 8
2.4本章結論........................................... 9
第三章 零電壓與零電流電池等化器切換原理分析.................. 10
3.1前言.............................................. 10
3.2雙向邱克直流對直流轉換器............................. 11
3.3電感電流連續模式電池等化............................. 12
3.4零電流切換模式電池等化............................... 15
3.5零電壓切換模式電池等化............................... 20
3.6本章結論........................................... 25
第四章 模糊控制電池等化器的設計與模擬......................... 26
4.1前言............................................... 26
4.2模糊控制電池等化器................................... 26
4.2.1 模糊化(Fuzzifier)........................... 27
4.2.2 模糊規則(Fuzzy Rule Base).................... 28
4.2.3 模糊推論引擎(Fuzzy Inference Engine).......... 29
4.2.4 解模糊化(Defuzzifier) ....................... 29
4.3利用MATLAB/Simulink設計模糊控制電池等化器............. 30
4.3.1邱克雙向直流轉換器模型設計與模擬................. 30
4.3.2 模糊控制器設計與模擬.......................... 31
4.3.3 模糊控制等化器模型模擬結果............................. 41
4.4本章結論............................................ 42
第五章 電池等化器硬體電路實現及實驗結果....................... 43
5.1前言............................................... 43
5.2硬體架構........................................... 43
5.3韌體架構........................................... 47
5.4實驗結果............................................... 51
5.4.1電感電流連續模式(CICM) ............................... 51
5.4.2電感電流不連續模式(DICM) ........................ 53
5.4.3電容電壓不連續模式(DCVM) ........................ 55
5.5具零電壓切換的模糊控制等化器............................ 57
5.6緩振電路的設計與實驗結果.................................. 59
5.7充放電週期測試實驗結果................................... 60
5.8開關切換損失的量測與頻譜分析.............................. 63
5.9等化器的效率分析………................................... 65
5.10 PI控制電池等化器的特性................................. 67
5.11本章結論.......................................... 69
第六章 結論與未來研究方向.................................. 70
6.1結論.............................................. 70
6.2未來研究方向....................................... 70
參考文獻.................................................. 71
附錄一 三顆電池串之模糊控制電池等化器Simulink模擬方塊圖........ 74


表2.1消耗型電池等化優缺點比較..................................5
表2.2非消耗型電池等化優缺點比較................................5
表2.3切換式電容電池等化優缺點比較..............................6
表2.4 諧振型電池等化優缺點比較................................7
表2.5雙向直流轉換器電池等化優缺點比較..........................8
表2.6集中式變壓器電池等化優缺點比較............................9
表4.1 模糊規則表............................................28
表5.1 模糊輸出對照表.........................................50
表5.2 模糊控制信號產生器參數表................................50
表5.3模糊控制器與PI控制器比較.................................69


圖1.1 ITRT/MRL 10Ah鋰離子電池充放電測試..........................2
圖2.1 電池串個別等化器...........................................4
圖2.2 消耗型的電池等化電路.......................................5
圖2.3 非消耗型電池等化電路.......................................6
圖2.4 電容切換式電池等化電路.....................................7
圖2.5 諧振型電池等化電路.........................................7
圖2.6 雙向升降壓轉換器電池等化...................................8
圖2.7 集中式變壓器型電路........................................9
圖3.1 電容電感能量轉換之電池串等化系統圖..........................10
圖3.2 雙向邱克電池等化電路及電池管理系統..........................11
圖3.3 邱克轉換器電路圖..........................................11
圖3.4 改良式雙向邱克轉換器電路...................................12
圖3.5 CICM模式VBj>VBj+1之等效電路..............................13
圖3.6 CICM模式切換時各元件的理論波形(VBj>VBj+1).................13
圖3.7 CICM模式VBj<VBj+1之等效電路..............................15
圖3.8 CICM模式切換時各元件的理論波形(VBj<VBj+1).................15
圖3.9 CICM及DICM邊界之切換平面.................................17
圖3.10 DICM 模式VBj>VBj+1的等效電路圖..........................17
圖3.11 DICM 模式切換時各元件的波形(VBj>VBj+1)...................18
圖3.12 DICM模式VBj<VBj+1之等效電路.............................19
圖3.13 DICM 模式切換時各元件的波形(VBj<VBj+1)...................19
圖3.14 DCVM下Vc之波形.........................................20
圖3.15 CICM及DCVM邊界之切換平面................................20
圖3.16 DICM模式VBj>VBj+1之等效電路.............................22
圖3.17 DCVM模式切換時各元件的理論波形(VBj>VBj+1)................23
圖3.18 DCVM模式VBj<VBj+1之等效電路............................24
圖3.19 DCVM模式切換時各元件的理論波形(VBj<VBj+1)................24
圖4.1 模糊控制器方塊圖.........................................26
圖4.2 三角型歸屬函數之定義......................................27
圖4.3 (a)交集之定義...........................................28
圖4.3 (b)聯集之定義...........................................28
圖4.4 電池等化器信號流程圖.....................................30
圖4.5 電池等化器電路模擬圖.....................................31
圖4.6 模擬電池等化器的各元件波形................................31
圖4.7 模糊控制器模型..........................................32
圖4.8 兩電池間電壓差(Vdiff)之歸屬函數..........................33
圖4.9 電池電壓(VB)之歸屬函數..................................33
圖4.10輸出(Output)之歸屬函數..................................34
圖4.11模糊推論步驟圖..........................................39
圖4.12模糊推論結果圖..........................................39
圖4.13模糊控制器輸出之三維特性曲線..............................40
圖4.14具三個電池串之模糊控制電池等化器模擬模型...................41
圖4.15(a)靜置時三顆電池串之電池等化曲線(模糊控制)................41
圖4.15(b)靜置時三顆電池串之電池等化曲線(PWM控制)................41
圖4.16(a)加1A充電電流時三顆電池串之電池等化曲線(模糊控制)........42
圖4.16(b)加1A充電電流時三顆電池串之電池等化曲線(PWM控制).........42
圖4.17(a)加1A放電電流時三顆電池串之電池等化曲線(模糊控制)........42
圖4.17(b)加1A放電電流時三顆電池串之電池等化曲線(PWM控制).........42
圖5.1 模糊控制電池等化器硬體架構方塊圖..........................43
圖5.2 微處理器接腳圖..........................................44
圖5.3 差動放大器接腳圖........................................44
圖5.4 類比多工器接腳圖........................................45
圖5.5 類比數位轉換器接腳圖.....................................45
圖5.6 控制訊號產生器接腳圖.....................................46
圖5.7 等化器驅動電路..........................................46
圖5.8 等化器線路圖............................................47
圖5.9 電池等化器韌體流程圖.....................................48
圖5.10 讀取電池電壓之流程圖....................................48
圖5.11 等化方向決策流程圖......................................48
圖5.12 模糊控制器參數取得之流程圖...............................49
圖5.13 電池等化系統線路圖......................................51
圖5.14 L1上的電流與電壓波形...................................52
圖5.15 L2上的電流與電壓波形...................................52
圖5.16 靜置時電池等化電路實驗結果...............................52
圖5.17 加上1A充電之電池等化結果................................53
圖5.18 加上1A放電之電池等化結果................................53
圖5.19 L1上的電流與電壓波形..................................54
圖5.20 L2上的電流與電壓波形..................................54
圖5.21 靜置時電池等化結果.....................................54
圖5.22 加上1A充電之電池等化結果...............................55
圖5.23 加上1A放電之電池等化結果...............................55
圖5.24 開關上Vgs電壓與電容VC的電壓波形.........................56
圖5.25 開關上Vgs電壓與VT電壓波形..............................56
圖5.26 靜置時電池等化電路實驗結果..............................56
圖5.27 加上1A充電之電池等化結果...............................56
圖5.28 加上1A放電之電池等化結果...............................57
圖5.29 模糊控制電池等化器各元件波形............................57
圖5.30 靜置時之電池等化結果...................................58
圖5.31 加上1A充電之電池等化結果...............................58
圖5.32 加上1A放電之電池等化結果...............................58
圖5.33 緩振器電路分類........................................59
圖5.34 緩振器硬體線路........................................59
圖5.35 未加緩振電路VDS波形...................................60
圖5.36 加緩振電路VDS波形.....................................60
圖5.37(a)無個別電池等化器之充放電週期測試......................61
圖5.37(b)加上個別電池等化器之充放電週期測試....................61
圖5.37(c)加上模糊控制個別電池等化器之充放電週期測試.............61
圖5.38(a)充電週期測試平均電池容量比較.........................62
圖5.38(b)放電週期測試平均電池容量比較.........................62
圖5.39(a) CICM開關上的切換損失波形...........................63
圖5.39(b) CICM開關上的切換損失頻譜分析.......................63
圖5.40(a) DICM開關上的切換損失波形...........................64
圖5.40(b) DICM開關上的切換損失頻譜分析........................64
圖5.41(a) DCVM開關上的切換損失波形...........................64
圖5.41(b) DCVM開關上的切換損失頻譜分析.......................65
圖5.42 CICM等化的效率曲線...................................66
圖5.43 DICM等化的效率曲線....................................66
圖5.44 DCVM等化的效率曲線....................................66
圖5.45 PI控制電池等化器方塊圖.................................67
圖5.46(a) PI控制器Gain值較小之電池等化曲線(4V,3.9V,3.2V).......68
圖5.46(b) PI控制器Gain值較小之電池等化曲線(4V,3.9V,3.8V).......68
圖5.47(a) PI控制器Gain值較大之電池等化曲線(4V,3.6V,3V).........68
圖5.47(b) PI控制器Gain值較大之電池等化曲線(4V,3.9V,3.8V).......68
圖5.48(a) 在不同等化控制器下之電池等化曲線(PI控制電池等化)........68
圖5.48(b) 在不同等化控制器下之電池等化曲線(模糊控制電池等化)......68
圖5.49(a) 在不同等化控制器下之電池等化曲線(PI控制電池等化)........69
圖5.49(b) 在不同等化控制器下之電池等化曲線(模糊控制電池等化).......69
[1]S.T. Tung, D.C. Hopkins, and C.R. Mosling, “Extension of Battery LIFe via Charge Equalization,” IEEE Transactions on Industrial Electronics, Vol. 40, pp. 96-104, Feb. 1993.
[2]S.T. Tung, D.C. Hopkins, and C.R. Mosling, “The Use of Equalizing Converter For Serial Charging of Long Battery Strings,” Applied Power Electronics Conference and Exposition Conference Proceedings, pp. 493-498, 1991.
[3]N.H. Kutkut, “Non-Dissipative Current Diverter using A Centralized Multi-Winding Transformer,” Power Electronics Specialists Conference, Vol. 1, pp. 648–654, 1997.
[4]N.H. Kutkut, “A Modular Non Dissipative Current Diverter For EV Battery Charge Equalization,” Applied Power Electronics Conference and Exposition, Vol. 2 , pp. 686 -690, 1998.
[5]V.L. Teofilo, L. Vmerritt, and R.P Hollandsworth, “Advanced Lithium Ion Battery Charger,” IEEE AES Systems Magazine, pp. 30-35, November 1997.
[6]K. Nishijima, H. Sakamoto, K. Harada, “A PWM Controlled Simple and High Performance Battery Balancing System,” Power Electronics Specialists Conference, Vol. 1, pp. 517-520, 2000.
[7]N.H. Kutkut, and D.M. Divan, “Dynamic Equalization Techniques For series Battery Stacks,” Telecommunications Energy Conference, pp. 514 –521, 1996.
[8N.H. Kutkut, D.M. Divan, and D.W. Novotny, “Charge Equalization For Series Connected Battery Strings,” IEEE IAS Annual Meeting, pp. 1008-1015, October 1994.
[9]N.H. Kutkut, L.N. Herman, D.M. Divan, and D.W. Novotny, “Design Considerations for Charge Equalization of an Electric Vehicle Battery System,” Applied Power Electronics Conference and Exposition, pp. 96 -103, 1995.
[10]H. Sakamoto, K. Murata, K. Nishijima, K. Harada, S. Taniguchi, K. Yamasaki, and G. Ariyoshi, “Balanced Charging of Series Connected Battery Cells,” Telecommunications Energy Conference, pp. 311-315. 1999.
[11]C. Pascual, and P.T. Krein, “Switched Capacitor System For Automatic Series Battery Equalization,” Applied Power Electronics Conference and Exposition, Vol. 2, pp. 848 –854, 1997.
[12]Panasonic Batteries Handbook 20000.
[13]Mo-Hua Yang, Cheng-Hsing Hsieh, and Bing-Ming Lin, “Development of Li-ion Battery for Electric Bike Application,” EVS 18 Berlin, 2001.
[14]李文雄, “鋰電池E世代的能源,” 科學發展專刊, 第362期, pp. 32-35, 2003年.
[15]C.B. Matsumoto, J. Prater, and D. Smith, “Lithium ion Battery Performance and Charge Control,” Energy Conversion Engineering Conference, Vol. 1, pp. 363–368, 1996.
[16]Jing-Wang, W.G. Dunford, and Konrad-Mauch, “ModIFied Boost Converter With Continuous Inductor Current Mode and Ripple Free Input Current,” Power Electronics Specialists Conference, Vol. 1, pp. 390-396, 1996.
[17]Z. Zhang, and S. , “A High Efficiency 1.8 kW Battery Equalizer,” Applied Power Electronics Conference and Exposition, Eighth Annual, pp. 221-227, 1993.
[18]N. Mohan, T.M. Undeland, and W.P. Robbins, “Power Electronics Converters, Applications, and Design,” John Wiley & Sons Inc., pp. 184-188.
[19]林志一, 曾圖龍, “交談式電路模擬分析與應用,” 全華科技圖書股份有限公司, 2000.
[20]Cheun-Chien Lee, “Fuzzy Logic in Control System : Fuzzy Logic Controller--PartⅠ,” IEEE Transactions on System, Vol. 20, pp. 404-418, March/APRⅡ, 1990.
[21]Cheun-Chien Lee, “Fuzzy Logic in Control System : Fuzzy Logic Controller, Part Ⅱ,” IEEE Transactions on System, Vol. 20, pp. 419-435, March/APRⅡ, 1990.
[22]Chin-Teng Lin, and C.S. Lee, “Neural Fuzzy System,” Prentice Hall International, pp. 142-176.
[23]謝冠群, 陳良瑞, 黃國順, 陳榮昇, “以模糊控制為基礎的鋰離子電池快速充電器,” 第二十屆電力研討會, pp. 320-324 , 2000.
[24]Guan-chyun Hsieh, Liang-Rui Chen, and Kuo-Shun Huang, “Fuzzy Controlled Li-Ion Battery Charge System with Active State-of-charge Controller,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 3, pp. 585-593, June 2001.
[25]P. Singh, J. Rajagopalan, R. LaFollette, C.J. Fennie, and D.E. Reisner, “Fuzzy Logic-Based Solar Charge Controller for Microbatteries,” Photovoltaic Specialists Conference, Twenty-Eighth IEEE, pp. 1726-1729, 2000.
[26]P. Singh, J. Rajagopalan, R. Lafollette, C.J. Fennie, and D.E. Reisner, “Fuzzy Logic-Based Micro Power Supply For MEMS Applications,” Applications and Advances, 2001. The Sixteenth Annual Battery Conference, pp. 355-357, 2001.
[27]Yu-Qin, and Shanshan-Du, “A Practical and Low Cost PWM Battery Charger Using Fuzzy Logic Control For UPS Application,” Telecommunications Energy Conference, INTELEC '94, 16th International, pp. 443-450, 1994.
[28]G.E.M.D.C. Bandara, Ratcho-Ivanov, and Stoyan-Gishin, “Intelligent Fuzzy Controller for a Lead-Acid Battery Charger,” Systems, Man, and Cybernetics, Vol. 6, pp. 185–189, 1999.
[29]G.E.M.D.C Bandara, R.M. Ivanov, and S. Gishin, “Fuzzy Control of a Universal Battery Charger,” Fuzzy Information Processing Society, NAFIPS. 18th International Conference of the North American, pp. 844-848, 1999.
[30]華志強,蔡俊偉, “模糊控制三態充電器之設計與製作,” 第二十一屆電力研討會, 2001
[31]Zafar-Ullah, Brian-Burford, and S. Dilip, “Fast Intelligent Battery Charging Neural-Fuzzy Approach,” IEEE AES Systems Magazine, pp. 26-29, June 1996.
[32]Patricia-Melin, and Oscar-Castillo, “Intelligent Control of Complex Electrochemical System With a Neuro-Fuzzy-Genetic Approach,” IEEE Transaction on Industrial Electronics, Vol. 48, No. 5, pp. 951-955, October 2001.
[33]M.J. Isaacson, and R.P. Hollandsworth, P.J. Giampaoli, F.A. Linkowsky, A. Salim, and V.L. Teofilo, “Advanced lithium ion battery charger,” Battery Conference on Applications and Advances, pp. 193-198, 2000.
[34]M. Broussely, M. Perelle, J. McDowall, G. Sarre, and J. Martaeng, “Lithium Ion: The Next Generation of Long Life Batteries – Characteristics, Life Predictions, and Integration into Telecommunication System,” Telecommunications Energy Conference, pp. 194–201, 2000.
[35]Y.S. Lee, and M.W. Cheng, “Fuzzy Logic Controlled Battery Equalizer for Series
Controlled Lithium-Ion Battery strings,” The 19th International Battery Hybrid
and Fuel Cell Electric Vehicle Symposium EVS19, pp. 1891-1901, October 2002.
[36]Y.S. Lee, and G.T. Chen, “ZCS Bi-directional DC-to-DC Converter Application
in Battery Equalization for Electric Vehicle,” The 35th Annual IEEE Power
Electronics Specialists Conference, pp. 2766-2772, June 2004.
[37]李永勳, 杜俊逸, “Design of An Intelligent Controller for Series Connected
Lithium-Ion Battery Strings Using FLC-BEC Technique,” 第一屆電力電子
研討會, September 2002.
[38]李永勳, 鄭國田, “利用雙向Cuk轉換器以達到電池串中電池電壓的平衡控制(Bi-directional Cuk Converter Application in Cell Voltage Balancing
Control of Battery String),” 第二屆電力電子研討會, September 2003.
[39]Bo-Tao Lin, and Yim-Shu Lee, “Power-factor correction using Cuk converters
in discontinuous-capacitor-voltage mode operation,” Industrial Electronics, IEEE Transactions on, Vol. 44, pp. 648-653, October 1997.
[40]Oto Tezak, Drago Dolinar, and Miro Milanovic, “Snubber Design Approach for DC-DC Converter Based on Differential Evolution Method,” 2004 IEEE, pp. 87-91, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top