(3.238.96.184) 您好!臺灣時間:2021/05/12 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡瑋哲
研究生(外文):Wei-Che Tsai
論文名稱:質子交換膜燃料電池流道設計及最佳性能之研究
論文名稱(外文):Flow channel designs and optimal performance analysis of proton exchange membrane fuel cells
指導教授:李弘毅李弘毅引用關係顏維謀顏維謀引用關係
指導教授(外文):Hung-Yi LiWei-Mon Yan
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:111
中文關鍵詞:流道設計傳統流道交叉流道電池性能壓力損失
外文關鍵詞:flow field designsconventional flow fieldsinterdigitated flow fieldscell performancepressure drop
相關次數:
  • 被引用被引用:3
  • 點閱點閱:193
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本論文係利用計算流體力學軟體CFDRC建立燃料電池之三維計算模型,主要探討傳統流道(直通型流道、Z型流道、蛇型流道)與新型交叉流道(直通型加檔板、Z型加檔板)之質子交換膜燃料電池內部電質傳現象。此外藉由改變陰極入口氣體流量,探討不同流道設計形狀結構(流道數目、流道長度、轉折數目、檔板的有無)在實際應用上對燃料電池之性能及流道壓損的影響,藉此選擇較佳燃料使用率,相對較小壓力損失的流道設計,以符合實際應用上的經濟效益。
本研究中得知,當操作電壓大於0.6V時,可忽略不同流道設計對電池內部局部電流密度的影響;在傳統流道設計中,能夠藉由增加流道長度與轉折數目,使較多的氧氣含量進入反應面參與反應,促使電池性能提升;此外在交叉流道設計中,由於流道內加入檔板,增加反應氣體強制進入燃料電池內部參與電化學反應,因此相較於傳統流道設計不但可以提升電池的性能,並可有效減少供應之氣體燃料。在同時考慮陰極入口氣體流量對燃料電池極化性能曲線及壓力損失的影響後發現,雖然直通型交叉流道之進、出口壓力差曲線略大於Z型流道與直通型流道,但在燃料電池極化性能曲線上,明顯優於傳統流道與Z型交叉流道,燃料使用效率最佳,因此選擇直通型交叉流道設計,將最符合實際應用上的經濟效益。
The purpose of this thesis is to establish a three-dimensional computational model of the proton exchange membrane fuel cell. The main objective is to investigate the phenomena of the electron/mass transfer inside a proton exchange membrane fuel cell with conventional flow fields (parallel flow field, z-type flow field, serpentine flow field) and interdigitated flow fields (parallel flow field with baffle, z-type flow field with baffle). In addition, the effects of different flow field designs (flow channel number, flow channel length, corner numbers and baffle effects) on the cell performance and flow channel pressure drop of the PEM fuel cells under the real operating conditions are examined in detail by different air flow rates. These results are useful for the flow field designs of the PEM fuel cells.
The predicted results reveal that the effects of the different flow field designs on the local current density inside a PEM fuel cell can be neglected when the operating condition of voltage is greater than 0.6V. For the conventional flow fields, the cell performance increases with an increase in flow channel length and corner numbers. As for the interdigitated flow fields, due to the baffle effect, the reactant gas is forced through the gas diffuser layer. Therefore, compared with the conventional flow field designs, the PEM fuel cell with interdigitated flow field can achieve the same cell performance with a lower fuel consumption rate. For the effects of the cathode inlet gas flow rate on the cell performance and flow channel pressure drop, although the PEM fuel cells with parallel flow field with baffle have a slightly larger pressure drop between the inlet and the outlets than those with parallel flow field or z-type flow field, but the cell performance is significantly raised. For this reason, the PEM fuel cell with parallel flow field with baffle behaves with the economic benefits in practical application.
.
摘要 I
Abstract II
目錄 IV
圖錄 VI
表錄 X
符號說明 XI
一、序論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 數值模擬 3
1.2.2 流道設計 9
1.2.2.1 直通型流道 9
1.2.2.2 蛇型流道 11
1.2.2.3 交叉型流道 14
1.3 研究動機 19
二、理論分析 23
2.1 基本假設 23
2.2 統御方程式 24
2.3 邊界條件 29
三、數值方法 38
3.1 數值方法 38
3.2 格點數測試 40
3.3 文獻結果比較 41
四、結果與討論 44
4.1 傳統流道 44
4.2 交叉流道 55
4.3 傳統流道與交叉流道之性能差異 62
五、結論與未來展望 102
參考文獻 105
Berning, T., Lu, D.M., and Djilali, N., 2002,“Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,”J. Power Sources, Vol. 106, pp. 284-294.
Berning, T., and Djilali, N., 2003, “A 3D, Multicomponent Model of The Cathode and Anode of A PEM Fuel Cell,” J. Electrochem. Society, Vol. 150, pp. 1589-1598.
Berg, P., Promislow, K., Pierre, J.S., Stumper, J., and Wetton, B., 2004, “Water Management in PEM Fuel Cells,” J. Electrochem. Society, Vol. 151, pp. 341-353.
Cha, S.W., Hayre, R.O., Saito, Y., and Prinz, F.B., 2004, “The scaling behavior of flow patterns: a model investigation,” J. Power. Sources, Vol. 134, pp. 57-71.
Dullien, F.A.L.,1991,“Porous Media,”Academic Press, New York.
Dutta, S., Shimpalee, S., and Van Zee, J.W., 2001, “Numerical Prediction of Mass exchange between Cathode and Anode Channels in a PEM Fuel Cell,” J. Heat Mass Transfer, Vol. 44, pp. 2029-2042.
Ferng, Y.M., Tzang, Y.C., Pei, B.S., Sun, C.C., and Su, A., 2004, “Analytical and experimental investigations of a proton exchange membrane fuel cell,” J. Hydrogen Energy, Vol. 29, pp. 381-391.
Gurau, V., Liu, H., and Kakac, S., 1998, “Two Dimensional Model for Proton Exchange Membrane Fuel Cells,” AIChE J., Vol. 44, No. 11, pp. 2410-2422.
Ge, S.H., and Yi, B.L., 2003, “A Mathematical Model for PEMFC in Different Flow Mode,” J. Power Sources, Vol. 124, pp. 1-11.
He, W., Yi, J.S., and Nguyen, T.V., 2000, “Two Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields,” AIChE J., Vol. 46, No. 10, pp. 2053-2064.
Hu, M., Gu, A., Wang, M., Zhu, X., and Yu, L., 2004a, “Three Dimensional Two Phase Flow Mathematical Model for PEM Fuel Cell:PartⅠ.Model Development,” Energy Conversion and Management, Vol. 45, pp. 1861-1882.
Hu, M., Gu, A., Wang, M., Zhu, X., and Yu, L., 2004b, “Three Dimensional Two Phase Flow Mathematical Model for PEM Fuel Cell:PartⅡ.Analysis and Discussion of the Internal Transport Mechanisms,” Energy Conversion and Management, Vol. 45, pp. 1883-1916.
Hu, G., Fan, J., Chen, S., Liu, Y., and Cen, K., 2004, “Three-dimensio- nal numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields,” J. Power Sources, Vol. 136, pp.1-9.
Jeng, K.T., Lee, S.F., Tsai, G.F., and Wang, C.H., 2004, “Oxygen mass transfer in PEM fuel cell gas diffusion layers,” J. Power Sources, Vol. 138, pp.41-50.
Kazim, A., Liu, H.T., and Forges, P., 1999, “Modelling of performance of PEM Fuel Cells with Conventional and Interdigitated Flow Fields,” J. Applied Electrochemistry, Vol. 29, pp. 1409-1416.
Kumar, A., and Reddy, R.G., 2003, “Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells,” J. Power Sources, Vol. 113, pp. 11-18.
Li, P.W., Schaefer, L., Wang, Q.M., Zhang, T., and Chyu, M.K., 2003, “Multi-gas transportation electrochemical performance of a polymer electrolyte fuel cell with complex flow channels,” J. Power Sources, Vol. 115, pp. 90-100.
Mazumder, S., and Cole, J.V., 2003a, “Rigorous 3-D Mathematical Modeling of PEM Fuel CellsⅠ. Model Predictions with Liquid Water Transport,” J. Electrochemical. Soc., Vol. 150, pp. 1503-1509.
Mazumder, S., and Cole, J.V., 2003b, “Rigorous 3-D Mathematical Modeling of PEM Fuel CellsⅡ. Model Predictions with Liquid Water Transport,” J. Electrochemical. Soc., Vol. 150, pp. 1510-1517.
Natarajan, D., and Nguyen, T.V., 2001, “A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors,” J. Electrochim. Soc., Vol. 148, No. 12, pp. 1324-1335.
Natarajan, D., and Nguyen, T.V., 2003, “Three Dimensional Effects of Liquid Water Flooding in the Cathod of a PEM Fuel Cell,” J. Power Sources, Vol. 115, pp. 66-80.
Oosthuizen, P.H., Sun, L. and McAuley, K.B., 2005, “The effect of channel-to-channel gas crossover on the pressure and temperature distribution in PEM fuel cell flow plates,” Applied Thermal Engineering, Vol. 25, pp.1083-1096.
Pasaogullari, U., and Wang, C.Y., “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells Using FLUENT,” Electrochemical Engine Center, University Park, PA, 16802.
Rowe, A., and Li, X., 2001, “Mathematical Modeling of Proton Exchange Membrane Fuel Cells,” J. Power Sources, Vol. 102, pp. 82-96.
Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., 1991,“Polymer Electrolyte Fuel Cell Model,”J. Electrochemical Society, Vol. 138, No. 8, pp. 2334-2342.
Shimpalee, S., Greenway, S., Spuckler, J.W., and Van Zee, J.W., 2004, “Predicting water and current distributions in a commercial-size PEMFC,” J. Power Sources, Vol. 135, pp. 79-87.
Song, D., Wang, Q., Liu, Z., Navessin, T., and Holdcroft, S., 2004, “Numerical study of PEM fuel cell cathode with non-uniform catalyst layer,” Electrochimica Acta, Vol. 50, pp. 731-737.
Siegel, N.P., Ellis, M.W., Nelson, D.J., and Spakovsky, M.R., 2004, “A two-dimensional computational model of a PEMFC with liquid water transport,” J. Power Sources, Vol. 128, pp. 173-184.
Um, S., Wang, C.Y., and Chen, K.S., 2000, “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” J. Electrochemical. Soc., Vol. 147, pp. 4485-4493.
Um, S., and Wang, C.Y., 2004, “Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Fuel Cells,” J. Power Sources, Vol. 125, pp. 40-51.
Wang, C.Y., and Cheng, P., 1997, “Multiphase Flow and Heat Transfer in Porous Media,” Advances in Heat Transfer, Vol. 30, pp. 93-196.
Wang, C.Y., Gu, W.B., and Liaw, B.Y., 1999, “Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 1. Model Development,” J. Electrochemical Society, in press.
Wang, L., and Liu, H., 2004, “Performance studies of PEM fuel cells with interdigitated flow fields,” J. Power Sources, Vol.134, pp. 185-196.
Yan, W.M., Soong, C.Y., Chen, F., and Chu, H.S., 2004, “Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells,” J. Power Sources, Vol. 125, pp. 27-39.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔