跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/15 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴振泰
研究生(外文):Chen-tai Lai
論文名稱:不同錳含量下沃斯田鐵系不�袗�應力誘發麻田散鐵及雙晶之研究
論文名稱(外文):The Effect of Manganese Contents on the Strain Induced Martensite and Twinning of Austenitic Stainless Steels
指導教授:林東毅林東毅引用關係
指導教授(外文):Dong-Yih Lin
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:128
中文關鍵詞:熱處理麻田散鐵變形雙晶沃斯田鐵不�袗�機械性質
外文關鍵詞:Deformation twinningHeat treatmentMechanical propertiesmartensiteAustenitic stainless steel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:685
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究之目的在探討不�袗�中添加不同錳含量對δ-肥粒鐵含量與型態、應力誘發麻田散鐵及雙晶影響,藉以了解不同錳含量對沃斯田鐵系不�袗�常溫機械性質之理論基礎,並可作為不�袗�加工後相變化行為研究之參考。
根據研究結果顯示,錳含量越高,抑制肥粒鐵的效果越佳,而在不同加熱時間下,隨著加熱時間的增加而逐漸溶入沃斯田鐵基地中,因此δ-肥粒鐵含量也慢慢遞減。
在軋延測試方面,主要探討不�袗�在不同錳含量下,其對應力誘發麻田散鐵及雙晶的影響,實驗結果顯示,錳含量導致疊差能上升並減少麻田散鐵的生成量。
另外在拉伸及衝擊機械性質測試,結果顯示隨著錳含量的上升導致降伏強度、抗拉強度、伸長率及衝擊值有下降的趨勢,且隨著應變速率的上升導致溫度上升,麻田散鐵的產生量逐漸降低。
The purpose of this study is to discuss the influence of manganese contents on the δ-ferrite content, strain induced martensite and twinning of austenitic stainless steels. Results of this study can help the understanding of the effect of mangansese content on the martensitic phase transformation of cold working of stainless steels.
The experiments showed, the higher the manganese content in stainless steels is, the better is the suppression of δ-ferrite. Also the δ-ferrite is decreased with the increasing of heating time, because δ-ferrite diffuses into γ-matrix and makes its content decreased.
The rolling tests showed that the content of strain induced martensite in austenitic stainless steels is decreased with the increasing of manganese contents because stacking fault energy decreased.
The yield strength, tensile strength, elongation, impact energy and martensite content of test materials decrease with the increasing of manganese contents after tensile and impact tests. The increasing of strain rate brings to adiabatic heating of materials that suppresses the strain-induced martensite transformation.
中文摘要Ⅰ
英文摘要Ⅱ
致謝Ⅲ
總目錄V
圖目錄VⅢ
表目錄XⅢ
Chapter 1 前言1
1.1 沃斯田鐵系不�袗�之簡介1
1.2 麻田散鐵的形成4
Chapter 2 理論基礎與文獻回顧5
2.1 沃斯田鐵系不�袗�之凝固行為5
2.1.1 沃斯田鐵系不�袗�之凝固過程5
2.1.2 沃斯田鐵系不�袗�之凝固型態8
2.2 應力誘發雙晶與麻田散鐵對沃斯田鐵不�袗�機械性質的影響13
2.2.1 變形雙晶對機械性性質的影響13
2.2.2 應變誘發麻田散鐵相變態15
2.3 雙晶及麻田散鐵的相變機構16
2.3.1 雙晶的產生16
2.3.2 應變誘發麻田散鐵的成因16
2.4 影響應力誘發雙晶及麻田散鐵的因素21
2.4.1 疊差能21
2.4.2 溫度23
2.4.3 應變速率25
Chapter 3 實驗方法與過程27
3.1 實驗流程27
3.2 實驗方法29
3.2.1 試片材料準備29
3.2.2 化學成分分析29
3.2.3 時效熱處理30
3.2.4 拉伸試驗30
3.2.5 軋延試驗31
3.2.6 衝擊試驗32
3.2.7 硬度測試33
3.2.8 磁性分析33
3.2.9 光學顯微鏡觀察34
3.2.10 掃描式電子顯微鏡觀察34
3.2.11 X光繞射試驗34
Chapter 4 結果與討論35
4.1 不同錳含量對相變化之影響35
4.1.1 不同錳含量對凝固型態之影響35
4.1.2 軋延過程對δ-肥粒鐵的影響39
4.1.3 固溶化處理對不同銅含量之δ-肥粒鐵含量之影響41
4.1.4 固溶化熱處理對不同錳含量對硬度值之影響44
4.1.5 固溶化熱處理對晶粒大小之影響47
4.2 軋延試驗49
4.2.1 軋延試驗對應力誘發麻田散鐵產生的之影響50
4.2.2 麻田散鐵生成對硬度之影響55
4.2.3 軋延後金相觀察及分析59
4.2.4 不同錳含量軋延前後XRD分析62
4.3 拉伸試驗65
4.3.1 不同錳含量及時效熱處理對拉伸機械性質之影響66
4.3.2 不同應變速率對機械性質之影響75
4.3.3 拉伸試驗對應力誘發麻田散鐵產生的之響80
4.3.4 拉伸後金相觀察及破斷面分析83
4.4 衝擊試驗88
4.4.1 不同錳含量及時效熱處理對衝擊測試之影響90
4.4.2 衝擊後金相觀察及分析92
4.4.3 衝擊試驗對應力誘發麻田散鐵產生的之影響97
Chapter 5 結論99
Chapter 6 參考文獻101
中文部份
[1]王繼敏, “不�袗�與金屬腐蝕”, 鋼鐵研究, Vol.75, 1990, pp.1-60
[2]邱江明, “不�袗�的種類、特性及用途”, 鋼鐵研究, Vol.81, 1992, pp.1-42
[3]熱處理編輯委員會, 第三章退火與正常化,熱處理, 高立圖書有限公司, 1993, pp.93-95.
英文部份
[1]A. L. Schaffler, “Constitution Diagram for Stainless Steel Weld Metal”, Metal progress, Vol.56, No.11, 1949, pp.680-688.
[2]A. Mitra, P. K. Srivastava, P. K. De, D. K. Bhattacharya and D. C. Jiles, “Ferromagnetic properties of Deformation-Induced Martensite Transformation in AISI 304 Stainless Steel”, Metallurgical and Materials Transactions A, Vol.35 A, No.2, 2004, pp.599-605.
[3]B. M. Chaparro, M. M. Vieira and J. V. Fernandes, “Influence of the Mechanical Microtwinning on the Plastic Behaviour of the AISI 304 Stainless Steel”, Materials Science Forum, Vol.455-456, 2004, pp.711-716.
[4]D. Fahr, “Stress- and strain- induced formation of martensite and its effects on strength and ductility of metastable austenitic stainless steels”, Metallurgical Transactions, Vol. 2, No. 7, 1971, pp.1883-1892.
[5]D. Fahr, “Stress- and Strain- Induced Formation of Martensite and Its effects on Strength and Ductility of Metastable Austenitic Stainless Steels”, Metallurgical Transactions, Vol.2, No.7, 1970, pp.1883-1892.
[6]D. J. Kitecki and T. A. Siewert, “WRC-1992 Constitution Diagram for Stainless Steel Weld Metals”, Welding Journal, Vol.71, No.5, 1992, pp.171s-178s.
[7]D. K. Felbeck, and A. G. Atkins, “Strength and Fracture of Engineering Solids”, Prentice-Hall Inc., 1984.
[8]E. Gautier, A. Simon, G. Collette and G. Beck , “Effect of Stress and Strain on Martensitic Transformation in a Fe-Ni-Mo-C alloy with a high M//S Temperature”, Journal de Physique (Paris), Colloque,Vol.43, No.12, 1982 , pp. p c4. 473-c4. 477.
[9]E. R. Hwang and S. G. Kang, “Intergranular Corrosion of Stainless Steels in Molten Carbonate Salt”, Journal of Materials Science Letters, Vol.16, No.16, August, 1997, pp.1387-1388.
[10]F. C. Chen, C. P. Chou, P. Li and S. L. Chu, “Effect of Aluminum on TRIP Fe-Mn-Al Alloy Steels at Room Temperature”, Materials Science and Engineering A, Vol.A160, No.2, 1993, pp.261-270.
[11]F. C. Chen, P. Li, S. L. Chu, and C. P. Chou, “Evidence of Strain-Induced Martensitic Transformation in Fe-Mn-Al Austenitic Alloy Steels at Room Temperature”, Scripta Metallurgica et Materialia, Vol.25, No.3, 1991, pp.585-590.
[12]F. Lecroisey, A. Pineau, “Martensitic Transformation Induced by Plastic Deformaion in the Fe-Ni-Cr-C System”, Metallurgical Transactions, Vol.3, 1972, pp. 387-396.
[13]G. B. Olson and M. Cohen, “Kinetics of Strain-Induced Martensitic Nucleation”, Metallurgical Transactions A (Physical Metallurgy and Materials Science), Vol.6A, No.4, 1975, pp.791-795.
[14]G. B. Olson, and M. Cohen, “General Mechanism of Martensitic Nucleation: Part I. General Concepts and the Fcc Yields HCP Transformation”, Metallurgical Transactions A (Physical Metallurgy and Materials Science), Vol.7A, No.12, 1976, pp.1897-1904.
[15]G. B. Olson, and M. Cohen, “General Mechanism of Martensitic Nucleation: Part II. FCC yields BCC and Other Martensitic Transformations”, Metallurgical Transactions A, Vol.7A, No.12, 1976, pp.1905-1914.
[16]G. B. Olson, and M. Cohen, “General Mechanism of Martensitic Nucleation: Part III. Kinetics of Martensitic Nucleation”, Metallurgical Transactions A, Vol.7A, No.12, 1976, pp.1915-1923.
[17]G. Frommeyer and O. Grassel, “High Strength TRIP/TWIP and Superplastic Steels: Development, Properties, Application”, Revue de Metallurgie. Cahiers D''Informations Techniques, Vol.95, No.10, 1998, pp.1299-1310.
[18]G. Frommeyer, U. Brux, P. Neumann, “Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes”, ISIJ International, Vol.43, No.3, 2003, pp.438-446.
[19]G. L. Huang, D. K. Matlock, and G. Krauss, “Martensite Formation, Strain Rate Sensitivity, and Deformation Behavior of Type 304 Stainless Steel Sheet”, Metallurgical Transactions A, Vol.20A, No.7, 1989, pp.1239-1246.
[20]G.. K. Allan, “Solidification of Austenitic Stainless Steels”, Ironmaking and Steelmaking, Vol.22, No.6, 1995, pp.465-477.
[21]H. C. Shin, T. K. Ha and W. J. Park, “Deformation-Induced Martensitic Transformation under Various Deformation Modes”, Key Engineering Materials, Vol.233-236, No.II, 2002, pp.667-672
[22]H. Fujita and T. Katayama, “In-Situ Observation of Strain-Induced γ→ε→?Prime and γ→?Prime Martensitic Transformations in Fe-Cr-Ni Alloys”, Materials Transactions, JIM, Vol.33, No.3, 1992, pp.243-252.
[23]H. Their, R. Killing and V. Killing, “Solidification Modes of Weldments in Corrosion Resistant Steels-How to Make Them Visible”, Metal Construction,Vol.19, No.3, March, 1987, pp.127-130.
[24]I. Karaman, H. Sehitoglu, Y. I. Chumlyakov and H. J. Maier, “The Deformation of Low-Stacking-Fault-Energy Austenitic Steels”, JOM, Vol.54, No.7, 2002, pp.31-37.
[25]I. Meszaros, J. Prohaszka, “Magnetic Investigation of the Effect of ?Prime -Martensite on the Properties of Austenitic Stainless Steel”, Journal of Materials Processing Technology, Vol. 161, No.1-2, 2005, pp.162-168.
[26]Internet website: http://www.machinist-materials.com/stainless_table_two.htm
[27]J L. Remy, “Interaction between Slip and Twinning Systems and the Influence of Twinning on the Mechanical Behavior of Fcc Metals and Alloys”, Metallurgical Transactions A, Vol.12A, No.3, 1978, pp.387-408.
[28]J. J. Smith and R. A. Farrar, “Influence of Microstructure and Composition on Mechanical Properties of Some AISI 300 Series Weld Metals”, International Materials Reviews, Vol.38, No.1, 1993, pp.25-51.
[29]J. R. Patel and M. Cohen, “Criterion for the Action of Applied Stress in the Martensitic Transformation”, Acta Metallurgical, 1953, pp.531-538.
[30]J. Talonen and H. Hanninen, “Damping Properties of Austenitic Stainless Steels Containing Strain-Induced Martensite”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol.35 A, No.8, 2004, pp.2401-2406
[31]J. Talonen, P. Aspegren and H. Hanninen, “Comparison of Different Methods for Mmeasuring Strain Induced ?Prime -Martensite Content in Austenitic Steels”, Materials Science and Technology, Vol.20, No.12, December, 2004, pp.1506-1512.
[32]J. Y. Choi and W. Jin, “Strain Induced Martensite Formation and Its Effect on Strain Hardening Behaviour in the Cold Drawn 304 Austenitic Stainless Steels” Scripta Materialia, Vol. 36, No. 1, 1997, pp. 99-107.
[33]K. Mumtaz, S. Takahashi, J. Echigoya, Y. Kamada, L. F. Zhang, H. Kikuchi, K. Ara and M. Sato , “Magnetic Measurements of Martensitic Transformation in Austenitic Stainless Steel after Room Temperature Rolling”, Journal of Materials Science, Vol.39, No.1, 2004, pp.85-97.
[34]K. Nohara, Y. Ono and N. Ohashi , “Composition and Grain Size Dependence of Strain Induced Martensitic Transformation in Metastable Austenitic Stainless Steels”, Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, Vol.63, No.5, 1977, pp.772-782
[35]K. P. Staudhammer, L. E. Murr and S. S. Hecker, “Nucleation and Evolution of Strain-Induced Martensitic (BCC) Embryos and Substructure in Stainless Steel: a Transmission Electron Microscope Study”, Acta Metallurgica, Vol.31, No.2, 1983, pp.267-274.
[36]K. Prasad Rao, “Effect of Weld Wooling Rate on Delta-ferrite Content of Austenitic Weld Metals”, Journal of Materials Science Letters, Vol.9, No.6, Jun, 1990, pp.675-677.
[37]K. Rajasekhar, C. S.Harendranath, R. Raman and S. D.Kulkarni, “Microstructural Evolution during Solidification of Austenitic Stainless Steel Weld Metals: A Color Metallographic and Electron Microprobe Analysis Study”, Materials Characterization, Vol.38, No.2, February, 1997, pp.53-65.
[38]K. S. Ragharam, A. S. Sastri and M. J. Marcinkowksi, “Nature of Work Hardening Behavior in Hadfield''s Manganese Steel”, Transactions of the Metallurgical Society of AIME, Vol. 245, 1969, pp.1569-1975.
[39]K. Sato, H. Ichinose and Y. Inoue, “Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe-Mn-Al Alloys”, ISIJ International, Vol.29, No.10, 1989, pp.868-877.
[40]L. E. Murr and E. V. Esquivel, “Observations of Common Microstructural Issues Associated With Dynamic Deformation Phenomena: Twins, Microbands, Grain Size Effects, Shear Bands, and Dynamic Recrystallization”, Journal of Materials Science, Vol.39, No.4, 2004, pp.1153-1168.
[41]L. E. Murr and K. P. Staudhammer, “Effect of Stress Amplitude and Stress Duration on Twinning and Phase Transformations in Shock-Loaded and Cold-Rolled 304 Stainless Steel”, Materials Science and Engineering, Vol.20, No.1, 1975, pp.35-46.
[42]L. Remy, “Kinetics of FCC Deformation Twinning and Its Relationship to Stress-Strain Behaviour”, Acta Metallurgica, Vol.26, No.3, 1978, pp.443-451.
[43]M. Baeva, S. Neov and R. Sonntag, “Appearance of BCC Martensite after Cold Deformation of Austenitic Fe-Cr-Mn-N steels”, Scripta Metallurgica et Materialia, Vol.32, No.7, 1995, pp.1031-1035.
[44]M. Hadji and R. Badji “Microstructure and Mechanical Properties of Austenitic Stainless Steels after Cold Rolling”, Journal of Materials Engineering and Performance, Vol.11, No.2, 2002, pp.145-151.
[45]M. Imagumbi,“Behavior of Manganese Sulfide in Aluminum Killed Steel Solidification Un-Directionally in Steady State-Dendrite Structure and Inclusion”, ISIJ International, Vol. 34, No. 11, 1994, pp.896-905.
[46]M. M. Vieira, B. M. Chaparro, M. F. Vieira, and J. V. Fernandes, “Microstructural Plastic Behaviour of AISI 304 Austenltic Stainless Steel”, Materials Science Forum, Vol.455-456, 2004, pp.280-284.
[47]M. Onyuno, H. Oettel, U. Martin and A. Weiss, “On the Deformation Behaviour and Martensitic Transformations of Metastable Austenitic Steels”, Advanced Engineering Materials, Vol.6, No.7, 2004, pp.529-535+468.
[48]N. Suutala, T. Takalo and T. Moisio, “Ferrite-Austenitic Solidification Mode in Austenitic Stainless Steel Welds”, Metallurgical Transactions A, Vol.11A, No.5, 1980, pp.717-725.
[49]O. Grassel, L. Krueger, G. Frommeyer and L. W. Meyer, “High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development - Properties - Application”, International Journal of Plasticity, Vol.16, No.10, 2000, pp.1391-1409.
[50]O. Hammer and U. Svensson, “Solidification Technology in the Foundry and Casthouse”, The Metals Society, 1980, pp.401-410.
[51]O. P. Maksimova and V. N. Zambrzhitskiy, “ Influence of Austenite Grain Size on the Martensitic Transformation and Mechanical Properties of Metastable Austenitic Alloys”, Physics of Metals and Metallography, Vol.62, No.5, 1986, pp.132-142.
[52]P. J. Ferreira, J. B. Vander Sande, M. Fortes and A. Amaral Kyrolainen, “Microstructure Development During High-Velocity Deformation”, Metallurgical and Materials Transactions A, Vol.35 A, No.10, 2004, pp.3091-3101.
[53]P. Marshall, “Martensitic Transformations and the Effect of Aging on the Microstructure of Austenitic Stainless Steel, Austenitic Stainless Steels: Microstructure and Mechanical Properties”, Elsevier, London, 1984, pp.23-30
[54]PAT L. Mangonon, JR and G. Thomas, “Structure and Properties of Thermal-Mechanically Treated 304 Stainless Steel”, Metallurgical Transactions, Vol.1, No.6, 1970, pp.1583-1579.
[55]PAT L. Mangonon, JR. and G. Thomas, “The Martensite Phases in 304 Stainless Steel”, Metallurgical Transactions, Vol.1, 1970, pp.1577-1586.
[56]R. E. Schramm and R. P. Reed, “Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels”, Metallurgical Transactions A, Vol.6A, No.7, 1975, pp.1345-1351.
[57]R. Hill, “Physical metallurgy”, PWS Publishing company, Third Edition, 1992, pp. 539-561.
[58]R. Kiessling, “31st Hatfield Memorial Lecture: Stainless Steels - Materials in Competition”, Metals Technology, Vol.11, No.5, 1984, pp.169-180.
[59]R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, Wiley, New York, 1996,pp.23-50.
[60]S. F. Peterson, M. C. Mataya, and D. K. Matlock, “The Formability of Austenitic Stainless Steels”, Journal of Metals, Vol. 49, No. 9, 1997, pp. 54-58.
[61]S. Ganesh S. Raman, K. A. Padmanabhan, “Tensile Deformation Induced Martensitic Transformation in AISI 304LN Austenitic Stainless Steel”, Vol.13, No.5, Journal of Materials Science Letters, 1994, pp. 389-392.41.
[62]S. S. Hecker, M. G. Stout, K. P. Staudhammer, and J. L. Smith, “Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel:Part 1. Magnetic Measurement and Mechanical Behavior”, Metallurgical Transactions A, Vol. 13A, No. 4, 1982, pp. 619-626.
[63]T. Narutani, “Effect of Deformation Induced Martensitic Transformation on the Plastic Behavior of Metastable Austenitic Stainless Steel”, Material Transactions, JIM, Vol.30, No.1, 1989, pp.33-45.
[64]T. Suzuki, H. Kojima, and M. Ichihara,”An Experimental Study of The Martensite Nucleation and Growth in 18/8 Stainless Steel”, Acta Metallurgical, Vol. 25, No.2, 1977, pp. 1151-1162.
[65]U. Brux, O. Grassel, L. Krueger, G. Frommeyer, L. W. Meyer and A. Weise, “ Development and Characterization of High Strength Impact Resistant Fe-Mn-(Al-,Si) TRIP/TWIP Steels”, Steel Research, Vol.73, No.6-7, 2002, pp.294-298
[66]U. M. Ehrnsten, J. Likonen, L. I. Carpen and O. A. Varjonen, “Studying Localized Corrosion in Stainless Steels with Surface-Sensitive Methods”, Materials Characterization, 1996, pp.279-289.
[67]V. Kujanpaa, N. Suutala, T. Takalo and T. Moisio, “Solidification Cracking in Dash Estimation of The Susceptibility of Austenitic and Austenitic-Ferritic Stainless Steel Welds”, Metal Construction, Vol.12, No.6, 1980, pp.282-285.
[68]V. Shrinivas, S. K. Varma and L. E. Murr, “Deformation-Induced Martensitic Characteristics in 304 and 316 Stainless Steels during Room-Temperature Rolling”, Metallurgical and Materials Transactions A, Vol. 26A, No.3, 1995, pp.661-671.
[69]V. Tsakiris, and D. V. Edmonds, “Martensite and deformation twinning in austenitic steels”, Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, Vol. A273-275, 1999, pp. 430-436
[70]W. Black, A. Frehn, S. Kranz, A. Franke and A. Weiss, “Influence of Preceding Cryoforming and Testing Temperature on the Mechanical Properties of Austenitic Stainless Steels”, Steel Research, Vol.71, No.8, 2000, pp.303-309.
[71]W. S. Lee and C. F. Lin, “Comparative Study of the Impact Response and Microstructure of 304L Stainless Steel with and without Prestrain”, Metallurgical and Materials Transactions A, Vol.33, No.9, 2002, pp.2801-2810.
[72]W. S. Lee and C. F. Lin, “Effects of Prestrainning on the Impact Response and Twinning Structure of 304L Stainless Steel”, Materials Transactions, Vol.42, No.10, 2001, pp.2080-2086.
[73]W. T. Delong, “Ferrite in Austenitic Stainless Steel Weld Metal”, Welding research supplement, Vol.53, No.7, 1974, pp.273-286.
[74]Y. G. Kim, J. M. Han and J. S. Lee, “ Effect of Aluminum Content on Low Temperature Tensile Properties in Cryogenic Fe/Mn/Al/Nb/C Steels”, Metallurgical Transactions A, Vol. 17A, No. 11, 1986, pp. 2097-2098
[75]Y. Y. Li and X. M. Zhang, “In Situ Observation of Martensitic Transformation during Tensile Deformation of an Fe-Mn-C alloy”, Advances in Cryogenic Engineering, Vol.32, 1986, pp.385-388.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top