跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曹培彥
研究生(外文):Pei-yen Tsao
論文名稱:利用灰階影像直方圖偵測人眼
論文名稱(外文):Eye Detection Based on Grayscale-Histogram of Facial Image
指導教授:郭忠民郭忠民引用關係楊乃中
指導教授(外文):Chung-Ming KuoNai-Chung Yang
學位類別:碩士
校院名稱:義守大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:68
中文關鍵詞:人眼偵測
外文關鍵詞:eye detection
相關次數:
  • 被引用被引用:4
  • 點閱點閱:771
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
近年來,因為影像擷取相關技術的迅速發展,許多學者開始對人臉偵測或是表情辨識的研究產生興趣。人臉偵測的技術為許多應用系統的基礎,如影片監視系統、人臉辨識、人臉影像資料庫管理等;而人臉偵測的結果也是這些應用系統成敗的關鍵。因此,如何迅速有效的在影像中偵測人臉成為主要的研究課題。
本研究提出利用灰階影像直方圖之特徵來偵測人眼。我們首先利用膚色偵測擷取可能為人臉的區域,然後利用膚色區域的灰階値直方圖分佈曲線之特徵,來決定人眼灰階値偵測範圍,藉此篩選出可能為人眼之候選區塊,最後再以人眼的幾何關係及其形狀來選擇正確之人眼區塊並標示其位置。
根據實驗結果顯示,我們提出的人眼偵測法具有下列優點:(1)不受人臉拍攝角度之影響;(2)不受拍攝距離影響;(3)不受非有色眼鏡佩帶與否之影響(4)不受人種膚色之影響。在執行上,由於使用灰階資訊,排除不必要的顏色資訊,因而減低許多不必要的計算。因此,這是ㄧ個簡單、迅速、執行容易且偵測率高的人眼偵測法。
In recent years, technologies for image processing are developed rapidly. Many researchers are interested in human face-detection and facial expression recognition. Face detection plays an important role in many applications such as video surveillance, human-computer interface, face recognition and facial database management, and it is the key to improve the performances of those application system. In this thesis, we propose an efficient method for face detection.
First, we segment the skin-color region from the image, and then calculate the grayscale histogram of the skin-color region. We use the character of grayscale histogram of human facial image to determine a grayscale detecting-range, and use the range to segment eye candidates in binary image, which is obtained after skin-color segmentation, at last, we use the geometrical relationship of eyes and the shape to select and locate the correct eyes.
Experiment results show that the method we propose have advantages as follow: (1)It’s not effected by face orientation;(2) It’s not effected by the shooting distance; (3) It’s not effected by glasses whether or not; (4) It’s not effected by skin-color of human race. We only use the information of grayscale to save computation complexity. It’s a simple, fast, easy to execute and high performance method for human eye detection.
摘要I
ABSTRACTIII
誌謝V
目錄VI
圖目錄VIII
表目錄X
第1章 緒論1
1.1.問題描述與研究動機1
1.2.研究重點3
1.3.論文架構4
第2章 相關文獻回顧5
2.1.以認知為基礎之偵測法6
2.2.樣板比對偵測法7
2.3.以顯性特徵為基礎之偵測法9
2.4.以特徵為基礎之偵測法12
第3章 提出之人眼偵測方法21
3.1.影像膚色範圍擷取22
3.1.1.膚色偵測22
3.1.2.形態學運算27
3.2.訂定人眼偵測灰階値範圍29
3.2.1.平滑化灰階値方圖分佈曲線30
3.2.2.訂定灰階値偵測範圍31
3.3.訂定人眼偵測標準34
第4章 實驗結果37
第5章 結論及未來發展52
參考文獻54
[1]A. Rizzi, C. Gatta and D. Marini, ”A new algorithm for unsupervi-sed global and local color correction,” Pattern Recognition Letters 24, pp. 1663-1677, 2003.
[2]Al-Qayed and A. F. Clark, “An Algorithm for Face and Facial-Feature Location Based on Gray-Scale Information and Facial Geometry,” IEE Image Processing and its Application, Conference Publication , no. 465, pp. 625-629, 1999.
[3]C. C. Chiang, W. K. Tai, M. T. Yang, Y. T. Huang and C. J. Huang, ”A novel method for detecting lips,eyes and faces in real time,” Real Time Imaging, pp. 277–287, 2003.
[4]C. Lin and K. C. Fan, ”Human face detection using geometric triangle relationship,” Pattern Recognition, 2000. Proceedings. 15th International Conference, vol. 2, pp. 941-944, 2000.
[5]Craw, H. Ellis, and J. Lishman, “Automatic Extraction of Face Features,” Pattern Recognition Letters, vol. 5, pp. 183-187, 1987.
[6]E. Osuna, R. Freund, and F. Girosi, “Training Support Vector Machines: An Application to Face Detection,” Proc. IEEE onf. Computer Vision and Pattern Recognition, pp. 130-136, 1997.
[7]H. Han, T. Kacaguchi and R. Nagata, “Eye Detection Based On Grayscale Morphology,” IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, vol 1, pp. 498-502, 2002.
[8]Hasid, M. Pietikainen and B. Martinkauppi, “Color-based face detection using locuc model and hierarchical,” Pattern Recognition, Proceeding. 16th Internal Conference, vol. 4, pp. 196-200, 2002.
[9]J. Fan and K. Y. Yau, ”Automatic Image Segmentation by Integrating Color-Edge Extraction and Seeded Region Growing,” IEEE Transactions on image processing, vol. 10, no. 10, pp. 1454-1466,2001.
[10]J. Miao, B. Yin, K. Wang, L. Shen, and X. Chen, “A Hierarchical Multiscale and Multiangle System for Human Face etection in a Complex Background Using Gravity-Center Template,” Pattern Recognition, vol. 32, no. 7, pp. 1237-1248, 1999.
[11]K. Sobottka and I. Pitas, ”Extraction of Facial Regions and Features Using Color and Shape Information,” Proceedings of the 13th International Conference, vol. 3. pp. 421-425, 1996.
[12]K. Sobottka, I. Pitas, ”Extraction of Facial Regions and Features Using Color and Shape Information,” Proceedings of the 13th International Conference, vol. 3. pp. 421-425, 1996.
[13]K. Sobottka, I. Pitas,”Extraction of Facial Regions and Features Using Color and Shape Information,” Proceedings of the 13th International Conference, vol. 3. pp. 421-425, 1996.
[14]K. W. Wong, K. M. Lam and W. C. Siu, ” A robust scheme for live detection of human faces in color images,” Signal Processing: Image Communication 18, pp. 103–114, 2003.
[15]K. W. Wong, K. M. Lam and W. C. Siu, ”A robust scheme for live detection of human faces in color images,” Signal Processing: Image Communication, pp. 103–114, 2003.
[16]M. H. Yang, D. J. Kriegman and N. Ahuja, “Detecting Face in Image: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp.34-58,2002.
[17]M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.
[18]Q. B. Sun, W. M. Huang and J. K. Wu, “Face Detection Based on Color and Local Symmetry Information,” Proceedings of the 3rd. International Conference on Face & Gesture Recognition, pp. 30-35, 1998.
[19]R. Herpers, M. Michaelis, K. H. Lichtenauer and G. Sommer, “Edge and Keypoint Detection in Facial Regions,” Automatic Face and Gesture Recognition, Proceedings of the Second International Conference, pp. 212-217, 1996.
[20]R. L. Hsu, M. Abdel-Mottaleb and A. K. Jain, “Face Detection in Color Image,” IEEE Transactions On Pattern Analysis And Machine Intelligence, vol. 24, no. 5, pp. 696-706,2002.
[21]T. Kohonen, Self-Organization and Associative Memory. Springer 1989.
[22]T. Liang and H. K. Kwan, “Automatic Localization of Human Eyes in Complex Background,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 26-29,2002.
[23]W. J. Andrew, “Stable Segmentation of 2D Curves,” Doctor of Philosophy, University of Edinburgh. College of Science and Engineering. School of Informatics, 1998
[24]Yuille, P. Hallinan, and D. Cohen, “Feature Extraction from Faces Using Deformable Templates,” Int’l J. Computer vision, vol. 8, no. 2, pp. 99-111, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top