跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/02 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王裕玄
研究生(外文):Yu-hsuan Wang
論文名稱:利用耦合理論設計單方向表面聲波濾波器
論文名稱(外文):The Design of Unidirection Surface Acoustic Waves Filters Using Coupling of Modes Theory
指導教授:羅如燕
指導教授(外文):Ruyen Ro
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:65
中文關鍵詞:梳型濾波器單方向叉指換能器叉指換能器
外文關鍵詞:Comb FilterSPUDTIDT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:655
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文探討單方向表面聲波濾波器之散射特性。單方向表面聲波濾波器主要組成為單方向叉指換能器(SPUDT),而單方向叉指換能器係由叉指換能器(IDT)及反射柵欄構成。單方向叉指換能器能控制其傳輸能量方向,其中反射柵欄為控制頻寬因素。本文設計之窄頻帶單方向表面聲波濾波器,需要使用一有限長度脈衝響應(Finite Length Impulse Response, FIR)的視窗函數來抑制旁波帶,所運用之視窗函數為柴比雪夫視窗函數,其視窗函數加權數主要是用以調變電極重疊寬度。在本文中運用耦合理論配合傳輸矩陣法計算出元件之頻率響應,且觀察單方向叉指換能器內之叉指換能器與反射柵欄間的間距,對頻帶寬度、插入損耗及鏈波的影響,以及單方向叉指換能器之細胞數(Cell)對濾波器散射特性之影響。最後,以最佳的輸出入叉指換能器的間距、單方向叉指換能器內之叉指換能器與反射柵欄間的間距、反射柵欄數及叉指換能器對數,設計一窄頻帶及低插入損耗之中頻濾波器。
The scattering characteristics of the unidirection surface acoustic wave filter are investigated in this thesis. The unidirection surface acoustic wave filter consists of the single phase unidirection interdigital transducers (SPUDT). The SPUDT is composed of interdigital transducers (IDT) and reflection gratings. The SPUDT controls the direction of transmission energy, while the reflection grating controls the bandwidth. In my design, to create a narrow band the unidirection surface acoustic wave filter, a finite length impulse response (FIR) windows function is used to suppress sidelobe, in which, Chebyshev function is also used to modulate electrode overlap. In this thesis, coupling of modes is applied with transmission matrix method to calculate the frequency response. Also, we can observe the effect on bandwidth, inserting loss and chainwave from the gap between IDT and gratings, and the effect of on scattering characteristics from SPUDT cell. Results obtained in this thesis can be employed to design IF filters which are applicable for wireless communication systems.
中文摘要i
英文摘要ii
目錄iii
表目錄v
圖目錄vi
第一章 諸論1
1.1 研究背景與動機1
1.2 文獻回顧2
1.3 論文架構4
第二章 壓電特性與壓電材料之應用5
2.1 壓電特性5
2.2 壓電材料之應用7
2.3 表面聲波產生方式8
第三章 耦合理論之探討10
3.1 週期性結構之基本原理
3.2 表面聲波元件之柵欄結構15
3.3 表面聲波元件之叉指換能器結構16
3.3.1 叉指換能器之耦合理論17
3.3.2 叉指換能器之散射特性22
3.3.3 單埠表面聲波共振器25
第四章 單方向表面聲波濾波器之設計與模擬29
4.1 表面聲波濾波器之基本結構29
4.2 單方向表面聲波濾波器之特性分析31
4.2.1 延遲線之傳輸矩陣32
4.2.2 反射柵欄之傳輸矩陣32
4.2.2.1 短路型反射柵欄32
4.2.2.2 開路型反射柵欄33
4.2.3 單方向叉指換能器之傳輸矩陣35
4.2.4 延遲線對單方向叉指換能器之影響38
4.2.5 反射柵欄對單方向叉指換能器之影響39
4.3 單方向表面聲波濾波器之設計與模擬分析41
4.3.1 單電極與雙電極對單方向表面聲波濾波器之影響41
4.3.2 表面聲波梳型濾波器( SAW Comb Filter ) 之設計.43
4.3.3 視窗函數應用於表面聲波濾波器之設計44
第五章 結論與未來研究方向61
5.1 結論61
5.2 未來研究方向62
參考文獻63
中文部份
[1]吳郎,”電子陶瓷(壓電)”,全新科技圖書,1994.
[2]吳誌雄,”表面聲波元件—無線通訊之關鍵零組件”,電子月刊第六卷第二期,2000.
[3]高國陞,”表面聲波元件之頻率及溫度特性之研究”,國立中山大學電機工程學研究所博士論文,2004年六月.
[4]郭佩菁,”壓電薄膜系統與表面聲波元件之製作與量測”,國立台灣大學機械工程學系研究所碩士論文,2000年6月.
[5]黃仕泓、柯正浩,”表面聲波感測器之前瞻研究”,物理雙月刊二十三卷六期,2004年6月.
[6]簡俊謙,”表面聲波元件之設計及其在寬頻振盪器之應用”,國立交通大學電信工程研究所碩士論文,1999.
[7]羅如燕、李明利,”表面聲波在液體負載下之波傳特性”,義守大學電機研究所碩士論文,1997年6月.
英文部份
[1]A. Bryant et al., “Gas detection using surface acoustic wave delay line,” Sensors and Actuators, Vol. 4, pp. 105-115, 1983.
[2]A. J. Ricco, S. J. Martin and T. E. Zipperian, ”Surface acoustic wave gas sensor based on film conductivity changes,” Sensors and Actuators, Vol. 8, pp. 319-333, 1985.
[3]A. R. Reddy, “Design of SAW bandpass filter using new window functions,” IEEE Trans. Ultrasonics , Ferroelectrics and Frequency Control, Vol. 35, No. 1, pp.50-56, 1988.
[4]A. Snow and H. wohltjen, ”Poly(ethylene naleate) cyclopentadien: a model reactive polymer-vapor system for evaluation of a saw sensor,” Anal. Chem. Vol. 56, pp.141-148, 1984.
[5]A. Venema and others, “NO2 gas-concentration measurement with a SAW chemo sensor,” IEEE Trans. Ultrasonics , Ferroelectrics and Frequency Control, Vol. 34, No. 2, pp. 149-155, 1987.
[6]B. A. Auld, “Acoustic waves and fields in solids,” Vol. 2, Wiley Inc., New York, 1973.
[7]C. B. Saw, “Improved design of single-phase unidirectional transducers for SAW filters,” Ultrasonics Symposium, Proceedings of IEEE, Vol. 1, pp. 169-172, 1987.
[8]C. S. Hartmann, P. V. Wright, R. J. Kansy and E. M. Gerber, “An analysis of SAW interdigital transducers with internal reflections and the application to the design of single phase unidirectional transducers,” Proc. IEEE Ultrasonics Symposium, pp. 40-45, 1982.
[9]C. T. Chuang and R. M. White, ”Sensors utilizing thin-membrane SAW oscillators,” Ultrasonic Symposium, Proceeding of IEEE, Vol. 1, pp. 150-157, 1981.
[10]Clemens C. W. Ruppel and Tor A. Fjeldly, “Advances in surface acoustic wave technology, systems and applications,” Vol. 2, World Scientific Publishing Inc., 2001.
[11]Donghai Qiao et al., ”General Green’s function for SAW device analysis,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, Vol. 46, pp.1242-1253, 1999.
[12]G. T. Martin, H. Schmidt and B. Wall, “New SPUDT cell structures,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, Vol. 51, Issue 7, pp. 858 – 863, 2004.
[13]H. E. Kallman, “Transversal filters,” Proc. IRE 28. pp. 302-306, 1940.
[14]H. Fukushima, N. Hirasawa, M. Ueda, H. Ohmori, O. Ikata and Y.Satoh, ”A study of SAW antenna duplexer for mobile application,” Ultrasonics Symposium, Proceedings of IEEE, Vol. 1, pp. 9-12, 1998.
[15]H. Y. Tung and R. Ro, “Frequency responses of SAW filter with two-track slanted finger interdigital transducers,” Jpn. J. Appl. Phys., Vol. 44, pp.4025-4031, 2005.
[16]Jiming Lin, Ning Wang, Hui Chen and Yongan Shui, “Fast, precise, and full extraction of the COM parameters for multielectrode-type gratings by periodic Green''s function method,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, Vol. 49, pp. 1735 – 1738, 2002.
[17]Key-Ya. Hashimoto, “Surface acoustic wave devices in telecommunications,” Springer-Verlag Berlin Heidelberg , 2000.
[18]Lord Rayleigh, ”On wave propagation along the plane surface of an elastic solid,” Proc. London Math. Soc. Vol.7, pp. 4-11, 1885.
[19]M. Takeuchi, K. Yamanouchi, K. Murata and K. Doi, ”Floating electrode type SAW unidirectional transducers using leaky surface waves and their application to low loss filters,” Electronics and Communications in Japan, Part 3, Vol. 76, pp. 99-110, 1993.
[20]R. C. Rosenfeld, R. B. Brown and C. S. Hartman, “Unidirectional acoustic surface wave filter with 2dB insertion loss,” Proc. IEEE Ultrasonics Symp, pp. 425-428, 1974.
[21]R. E. Collin, “Field theory of guided waves,” McGraw-Hill Inc., New York, 1960.
[22]R. M. White and F. W. Voltmer, ”Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett. Vol. 17, pp. 314-316, 1965.
[23]R. Ro, H. Y. Tung and S. J. Wu, “Design of two-track SAW filter with width-controlled reflectors,” Jpn. J. Appl. Phys., Vol. 43, pp. 688-694, 2004.
[24]S. Lehtonen, V. P. Plessky, C. S. Hartmann and M. M. Salomaa, ” Unidirectional SAW transducer for gigahertz frequencies,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, Vol. 50, Issue 11, pp. 1404 – 1406, 2003.
[25]T. Moriizzumi, Y. Unno and S. Shiokawa, “New sensors in liquid using leaky SAW,” IEEE Ultrasonic Symposium, pp.579-582, 1987.
[26]V. I. Anisimkin, Gulyaev, Yu. V. Anisimkin and V. I. Verona, ” Temperature sensitivity of plate modes in ST quartz,” IEEE Ultrasonics Symposium. Proceedings of IEEE, Vol. 1, pp. 423 - 426, 2001.
[27]Y. V. Gulyaev and V. P. Plessky, “Slow surface acoustic waves in solids,” Sov. Tech., Phys. Lett. 3, pp. 220-223, 1977.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top