跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 16:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃紫琇
研究生(外文):Tzu-Hsiu Huang
論文名稱:腳踏車運動中固定與活動式骨盆支撐對下肢肌肉活化之影響
論文名稱(外文):Effects of fixed and dynamic pelvic support on lower extrimity muscle activation during pedaling movement
指導教授:蕭世芬蕭世芬引用關係
指導教授(外文):Shih-Fen Hsiao
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:行為科學研究所碩士班
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:147
中文關鍵詞:腳踏車運動肌肉活化骨盆支撐
外文關鍵詞:muscle activationpedalingpelvic support
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
研究目的:骨盆控制在人類位移功能扮演重要的角色,因此本實驗的目的在於瞭解活動式骨盆支撐的腳踏車運動,其下肢肌肉活化模式是否與固定式骨盆支撐不同,而較近似於步行,並假設活動式骨盆支撐會較固定式骨盆支撐徵召更多的肌肉活動。方法:本研究使用表面肌電圖記錄下肢肌肉在不同腳踏車模式之活化情形,分別為:固定座椅輕鬆組(SE)、固定座椅用力組(SH)、活動座椅無阻力組(D0)、活動座椅加十磅阻力組(D10)、活動座椅加50%體重阻力組(D50)。本研究共計十九位健康成人參與,將肌電圖資料分為活化時序與活化量來分析。結果與結論:五種腳踏車模式中,下肢肌肉之活化順序、活化時期皆沒有改變,顯示活動式與固定式骨盆支撐腳踏車運動的肌肉活化模式相似,並沒有較近似於步行;而活化量的部分,股四頭肌、比目魚肌與前脛肌與阻力較為相關,在兩種座椅模式,皆是阻力越強活化量越大。而大腿後肌群、腓腸肌的活化量則與骨盆支撐模式較為相關,在活動座椅腳踏車活動的肌肉活化量較大,顯示在活動式骨盆支撐的腳踏車運動中,雙關節肌肉有較多的肌肉徵召;亦顯現出雙關節肌肉因應任務不同時的微調功能。
Purpose: In human locomotion, pelvic control is very important. The purpose of this study was to understand the movement patterns of pedaling with mobile and fixed pelvic support and compare with gait. And also we hypothesize the muscular activities in this condition are higher than them with static pelvic support. Methods: We used surface EMG to record the muscle activities of lower extremities during various pedaling conditions (static-easy (SE), static-hard (SH), dynamic without resistance (D0), dynamic with 10 pounds resistance (D10), and dynamic with 50% body weight resistance (D50)). Nineteen healthy adults were tested, and we analyzed the data as two parts: timing and amplitude.
Results & Conclusion: Among five conditions the sequence and periods of muscle activation did not change. It appeared that the movement patterns of pedaling with mobile and fixed pelvic support showed no changes and were still different from gait. The amplitude of quadriceps, soleus, and tibialis anterior were correlated with loads. During two support conditions, these muscles activated more as loads increased. The amplitude of hamstrings and gastrocnemius were more related with pelvic support. During dynamic support modes, even the load was low the muscle activation was still higher than that in SE mode. It appeared biarticular muscles recruit more during dynamic pelvic support mode, and also showed the ability to adjust under the task demands.
第一章 緒論…………………………………………………………………………..1
1.1 簡介…………………………………………………………………………...1
1.2 文獻回顧……………………………………………………………………...4
1.2.1 下肢肌肉在步態中的角色………………………………………………5
1.2.2 固定式腳踏車肌肉活化的特性…………………………………………9
1.2.3 固定式腳踏車對於不同參數的變化…………………………………..18
1.2.4 腳踏車運動在臨床上的應用…………………………………………..23
1.3 腳踏車活動與步行之比較………………………………………………….26
1.4 研究假設…………………………………………………………………….28

第二章 研究方法…………………………………………………………………..30
2.1 研究對象…………………………………………………………………….30
2.2 實驗儀器與設備…………………………………………………………….31
2.2.1 可動式座椅腳踏車 (Bicycle) ………………………………………….31
2.2.2 表面肌電圖(Surface EMG)………………………………………….36
2.2.3 其他設備………………………………………………………………..39
2.3 實驗步驟…………………………………………………………………….40
2.4 資料分析…………………………………………………………………….45
2.4.1 時序參數………………………………………………………………..45
2.4.2 活化量參數……………………………………………………………..47
2.5 統計分析…………………………………………………………………….49
2.6 資料處理…………………………………………………………………….50

第三章 研究結果……………………………………………………………………52
3.1 循環總時間………………………………………………………………….52
3.2 股四頭肌在不同模式中之表現…………………………………………….53
3.2.1 活化時序………………………………………………………………..53
3.2.2 活化量…………………………………………………………………..57
3.3 大腿後肌群在不同模式中之表現………………………………………….60
3.3.1 活化時序………………………………………………………………..60
3.3.2 活化量…………………………………………………………………..64
3.4 比目魚肌在不同模式中之表現…………………………………………….67
3.4.1 活化時序………………………………………………………………..67
3.4.2 活化量…………………………………………………………………..71
3.5 腓腸肌在不同模式中之表現……………………………………………….75
3.5.1 活化時序………………………………………………………………..75
3.5.2 活化量…………………………………………………………………..79
3.6 前脛肌在不同模式中之表現……………………………………………….82
3.6.1 活化時序………………………………………………………………..82
3.6.2 活化量…………………………………………………………………..85
3.7 不同模式間肌肉活化時序之趨勢………………………………………….89
3.7.1 活化起始時間與活化結束時間………………………………………..89
3.7.2 活化總時間……………………………………………………………..94
3.7.3 共同收縮………………………………………………………………..97
3.8 不同模式間肌肉活化量之趨勢…………………………………………...100
3.8.1 活化期量………………………………………………………………100
3.8.2 休止期量………………………………………………………………104

第四章 討論……………………………………………………………………..107
4.1 研究假設與實驗結果之比較……………………………………………...107
4.1.1 活化時序的假設………………………………………………………107
4.1.2 活化量的假設…………………………………………………………108
4.2 阻力對肌肉活化之影響…………………………………………………...109
4.3 骨盆支撐對肌肉活化之影響……………………………………………...111
4.3.1 各肌肉在活動式骨盆支撐腳踏車活動中的變化……………………111
4.3.2 肌肉間的協同收縮模式………………………………………………114
4.4 活動式骨盆支撐與步行之比較…………………………………………...116
4.5 結論………………………………………………………………………...119
4.6 研究限制…………………………………………………………………...120
4.7 未來展望…………………………………………………………………...121

參考文獻……………………………………………………………………………123

附錄一………………………………………………………………………………A-1
以SEpeak正常化之股四頭肌活化量…………………………………………..A-1
以SEpeak正常化之大腿後肌群活化量………………………………………..A-2
以SEpeak正常化之比目魚肌活化量…………………………………………..A-3
以SEpeak正常化之腓腸肌活化量……………………………………………..A-4
以SEpeak正常化之前脛肌活化量……………………………………………..A-5

附錄二………………………………………………………………………………A-6
以MVC正常化之股四頭肌活化量……………………………………………..A-6
以MVC正常化之大腿後肌群活化量…………………………………………..A-7
以MVC正常化之比目魚肌活化量……………………………………………..A-8
以MVC正常化之腓腸肌活化量………………………………………………..A-9
以MVC正常化之前脛肌活化量………………………………………………A-10
Bobath B. (1990) Adult Hemiplegia. Oxford: Butterworth-Heinemann, p 11-9.
Brown DA & Kautz SA. (1998) Increased workload enhances force output during pedaling exercise in persons with poststroke hemiplegia. Stroke 29: 598-606.
Brown DA & Kautz SA. (1999) Speed-dependent reductions of force output in people with poststroke hemiparesis. Physical Therapy 79: 919-30.
Brown DA, Kautz SA & Dairaghi CA. (1997) Muscle activity adapts to anti-gravity posture during pedalling in persons with post-stroke hemiplegia. Brain 120: 825-37.
Brown DA & Kukulka CG. (1993) Human flexor reflex modulation during cycling. Journal of Neurophysiology 69(4): 1212-24.
Chen G, Kautz SA & Zajac FE. (2001) Simulation analysis of muscle activity changes with altered body orientations during pedaling. Journal of Biomechanics 34: 749-56.
Davies PM. (1990) Right In the Middle. Springer-Verlag Berlin Heidelberg.
Fujiwara T, Liu M & Chino N. (2003) Effect of pedaling exercise on the hemiplegic lower limb. American Journal of Physical Medicine & Rehabilitation 82: 357-63.
Ivanenko YP, Poppele RE & Lacquaniti. (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. Journal of Physiology 556(1): 267-82.
Kautz SA & Brown DA. (1998) Relationships between timing of muscle excitation and impaired motor performance during cyclical lower extremity movement in post-stroke hemiplegia. Brain 121: 515-26.
Kautz SA, Brown DA, Loos HFMVD & Zajac FE. (2002) Mutability of bifunctional Thigh muscle activity in pedaling due to contralateral leg force generation. Journal of Neurophysiology 88: 1308-17.
Kautz SA & Neptune RR. (2002) Biomechanical determinants of pedaling energetics: internal and external work are not independent. Exercise and Sport Sciences Reviews 30(4): 159-65.
Li L. (2004) Neuromuscular control and coordination during cycling. Research Quarterly for Exercise and Sport 75(1): 16-22.
MacIntosh BR, Neptune RR & Horton JF. (2000) Cadence, power, and muscle activation in cycle ergometry. Medicine & Science in Sports & Exercise 32(7): 1281-7.
Marsh AP, Martin PE & Sanderson DJ. (2000) Is joint moment-based cost function associated with preferred cycling cadence? Journal of Biomechanics 33: 173-80.
Neptune RR & Herzog W. (1999) The association between negative muscle work and pedaling rate. Journal of Biomechanics 32: 1021-6.
Neptune RR & Herzog W. (2000) Adaptation of muscle coordination to altered task mechanics during steady-state cycling. Journal of Biomechanics 33: 165-72.
Neptune RR & Hull ML. (1999) A theoretical analysis of preferred pedaling rate selection in endurance cycling. Journal of Biomechanics 32: 409-15.
Neptune RR & Kautz SA. (2000) Knee joint loading in forward versus backward pedaling: implications for rehabilitation strategies. Clinical Biomechanics 15: 528-35.
Neptune RR & Kautz SA. (2001) Muscle actication and deactivation dynamics: the governing properties in fast cyclical human movement performamce? Exercise and Sport Sciences Reviews 29(2): 76-81.
Neptune RR, Kautz SA & Hull ML. (1997) The effect of pedaling rate on coordinaton in cycling. Journal of Biomechanics 30(10): 1051-8.
Neptune RR, Kautz SA & Zajac FE. (2000) Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling. Journal of Biomechanics 33: 155-64.
Okamoto T, Okamoto K & Andrew PD. (2003) Electromyogrphic developmental changes in one individual from newborn stepping to mature walking. Gait and Posture: 18-27.
Raasch CC & Zajac FE. (1999) Locomotor strategy for pedaling: muscle groups and biomechanical functions. Journal of Neurophysiology 82: 515-25.
Raasch CC, Zajac FE, Ma B & Levine WS. (1997) Muscle coordination of maximum-speed pedaling. Journal of Biomechanics 30: 595-602.
Rogers LM, Brown DA & Gruben KG. (2004) Foot force direction control during leg pushes against fixed and moving pedals in persons post-stroke. Gait and Posture 19: 58-68.
Ryan MM & Gregor RJ. (1992) EMG profiles of lower extrimity muscles during cycling at constant workload and cadence. Journal of Electromyography and Kinesiology 2(2): 69-80.
Smak W, Neptune RR & Hull ML. (1999) The influence of pedaling rate on bilateral asymmetry in cycling. Journal of Biomechanics 32: 899-906.
Stout J. (2000) Gait: Development and Analysis. In: SK Campbell editor. Physical Therapy for Children, Philadelphia: W.B. Saunders Company, p 88-116.
Ting LH, Kautz SA, Brown DA & Zajac FE. (1999) Phase reversal of biomechanical functions and muscle activity in backward pedaling. Journal of Neurophysiology 81: 544-51.
Ting LH, Kautz SA, Brown DA & Zajac FE. (2000) Contralateral movement and extensor force generation alter flexion phase muscle coordination in pedaling. Journal of Neurophysiology 83: 3351-65.
Ting LH, Raasch CC, Brown DA, Kautz SA & Zajac FE. (1998) Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling. Journal of Neurophysiology 80: 1341-51.
Wollacott MH, Assaiante C & Amblard B. (1996) Development of balance and gait control. In: AM Brostein, T Brandt & M Woolacott editors. Clinical Disorders of Balance, Posture and Gait, London: Arnold, p 41-51.
Zajac FE. (2002) Understanding muscle coordination of the human leg with dynamical simulations. Journal of Biomechanics 35: 1011-8.
Zajac FE, Neptune RR & Kautz SA. (2002) Biomechanics and muscle coordination of human walking PartⅠ:Introduction to concepts, power transfer, dynamics and simulations. Gait and Posture 16: 215-32.
黃世旭, 李淑貞, 劉謹緣 & 李茂昌. (1996) 中國青年人步態常模建立. 中華物療誌 21(2): 21-37.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top