跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁馨仁
研究生(外文):Hsin-Jen Liang
論文名稱:敗血症時大鼠心室各分區中蛋白激酶C同功酶角色之探討
論文名稱(外文):The Roles of Protein Kinase C Isoforms in Various Regions of Rat Ventricles during Sepsis
指導教授:楊秀蘭楊秀蘭引用關係
指導教授(外文):Shaw-Lang Yang
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:78
中文關鍵詞:敗血症助細胞凋亡蛋白Bad心臟功能失調細胞凋亡蛋白激酶C同功酶ε
外文關鍵詞:sepsiscardiac dysfunctionapoptosisPKCεBad
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
敗血症�vsepsis�w是一種由於身體受到感染而引起全身性反應的臨床症狀,主要是受到各種促發炎(pro-inflammatory)及抗發炎(anti-inflammatory)路徑的調節,當兩種路徑無法維持平衡時,則會伴隨著續發性的多重器官衰竭(multiple organ failure)。在敗血症時,位於心臟中的酵素與接受器系統會有所損傷,而使其收縮力減弱,最後導致心臟功能失調(cardiac dysfunction)或甚至死亡。於有關的研究報告中亦指出心肌細胞的凋亡(apoptosis)是造成心因性敗血性休克之主要病因。在粒腺體路徑的細胞凋亡過程中,學者發現:去磷酸化的助細胞凋亡蛋白Bad可由細胞質轉位至粒腺體上,因而導致細胞凋亡。然而,目前對於敗血症促使心臟功能失調的作用機制仍瞭解有限。
根據我們先前的研究結果顯示,在早期敗血症時,大白鼠心室中細胞質部分的蛋白激酶C活性增加,而細胞膜部分則無變化,而在晚期敗血症時,細胞質與細胞膜部分的蛋白激酶C活性皆無改變。此外,在不同的生理及病理情況下,心臟中各個區域有其獨特的功能及反應。截至目前為止,蛋白激酶C(PKC)至少有十二種同功酶已被確定,在改變心臟收縮力、肥大反應以及心肌缺血的耐受力等細胞訊息路徑,分別扮演不同的角色。亦有文獻證實,蛋白激酶C同功酶對於細胞的凋亡具有抑制性或刺激性之影響。因此,本研究目的主要是在探討敗血症時大鼠心室各分區中蛋白激酶C同功酶之角色。
本研究是採用大白鼠以盲腸結紮刺孔術(cecal ligation and puncture, 簡稱CLP)來引發敗血症之動物模式。實驗動物分成三組:控制組、早期敗血症組以及晚期敗血症組。早期敗血症組和晚期敗血症組分別是指在進行盲腸結紮刺孔術後之九小時與十八小時犧牲實驗動物,取出心臟並將其分為室中膈和左、右心室等三個區域。蛋白激酶C同功酶與助細胞凋亡蛋白Bad的蛋白質表現量先由西方點墨法分析,再以電泳膠片影像處理系統(densitometer)定量之。心肌細胞凋亡的組織型態則由TUNEL染色法確定。而粒腺體的超顯微結構是藉由電子顯微技術觀察。本研究實驗結果:(1) 在正常生理情況下的大鼠心室各分區中,蛋白激酶C同功酶α、β、δ、ε、ζ、ι、λ以及μ於細胞質與細胞膜等部分,呈現不一致的分佈表現。其中,特別是蛋白激酶C同功酶ε (PKC��)的分佈,在心室各分區中,細胞膜部分的表現皆顯著多於細胞質部分,故之後實驗則著重於探討此同功酶在敗血症時,於心室各分區中所扮演之角色。(2) 在敗血症的病理情況下,於大鼠室中膈及左心室等分區中,蛋白激酶C同功酶ε由細胞質轉位至細胞膜的活化隨著病程的進展而減少。(3) 在大鼠的室中膈及左心室等分區中,心臟細胞凋亡的程度與Bad由細胞質至粒腺體的轉位亦隨著敗血症的發展有所增加。(4) 在大鼠的室中膈及左心室等分區中,隨著敗血症的病程發展,越來越多粒腺體出現腫脹(swelling)的病理性變化,而粒腺體嵴(crista)的排列亦隨之呈現病態的紊亂(disarray)或甚至是無法分辨。
綜合上述之研究結果,我們發現在室中膈與左心室等分區,於敗血症的病理情況下,可能是因為蛋白激酶C同功酶ε的轉位活化減少,以致助細胞凋亡蛋白Bad之磷酸化亦減少,而使去磷酸化的Bad由細胞質轉位至粒腺體,造成粒腺體的結構異常,最後導致心肌細胞的凋亡。因此,我們建議蛋白激酶C同功酶ε的區域特異性之不活化,可能是造成敗血症時心臟損傷的重要原因。
Sepsis is a clinical syndrome that results from the systemic response of the body to infection and is characterized and modulated by various pro-inflammatory and anti-inflammatory pathways. If homeostasis cannot be maintained, progressive and sequential dysfunction of various organ systems can occur. In the heart, enzyme/receptor systems have been reported to be damaged during sepsis, causing a decrease of contractility and leading to cardiac dysfunction and even death. Cardiomyocyte apoptosis contributes to the cardiogenic pathology of the septic shock. In the mitochondrial pathway, dephosphorylated Bad was found in the mitochondria and that has been implicated in apoptosis. However, the underlying molecular mechanisms for cardiac dysfunction have not yet been fully understood during sepsis.
Our previous results showed that cytosolic protein kinase C (cPKC) was activated in rat ventricles during the early hyperdynamic phase of sepsis, whereas membrane-associated protein kinase C (mPKC) activity was unchanged. During late sepsis, both cPKC and mPKC activities remained unchanged. Moreover, differential functions and responses are showed in various regions of heart under the state of physiology and pathology. For the moment, at least 12 protein kinase C (PKC) isoforms have been identified and may play different roles in cell signaling pathways leading to changes in cardiac contractility, the hypertrophic response, and tolerance to myocardial ischemia. Furthermore, the PKC isoforms have been shown to exert both inhibitory and stimulatory influences on apoptosis. Therefore, the present study was continuously investigated the roles of PKC isoforms in various regions of rat ventricles during sepsis.
Sepsis was induced by cecal ligation and puncture (CLP). Experiments were divided into three groups: control, early sepsis, and late sepsis. Early and late sepsis refers to those animals sacrificed at 9 and 18 hr after CLP, respectively. Ventricular septum, Left ventricle, and right ventricle were extracted, respectively. The protein contents of various PKC isoforms and Bad were quantified by Western blot and densitometric analysis. Myocardial apoptosis pattern was detected by terminal deoxynucleotidyl transferase-mediated dUTP in situ nick-end labeling (TUNEL). Ultrastructure of mitochondria was observed by electron microscopy. Our results showed: (1) PKC��, ��, ��, ��, ζ, ι, λ, and μ expressions were unevenly distributed in normal rat ventricles. Among them, the expression of membrane-associated PKC�� (mPKC��) was more than cytosolic PKC�� (cPKC��) in the septum, right and left ventricle under physiological condition; (2) While the PKC�� translocated from cytosol to membrane was decreased in left ventricle and septum during the progression of sepsis; (3) Myocardial apoptosis and Bad translocated from cytosol to mitochondria were increased in left ventricle and septum during the development of sepsis. (4) Mitochondria became swelling and its crista was disarrayed in left ventricle and septum during sepsis.
In conclusion, the PKCe translocation is decreased in septum and left ventricle that may decrease phosphorylation of the pro-apoptotic protein Bad. Then, the Bad translocated from cytosol to mitochondria and causing ultrastructure deformity of mitochondria. Finally, myocardial apoptosis is increased during the progression of sepsis. Therefore, we suggest that the area-specific inactivation of PKCe may contribute to the cardiac damage during sepsis.
中文總摘要…………………………………………………………01
英文總摘要…………………………………………………………04

第一章:緒論………………………………………………………07
1.1敗血症與心臟之關係……………...……………………………..08
1.2心臟之不同區域的生理及病理變化…………...………………..11
1.3蛋白激酶C同功酶的介紹………………………………………..13
1.4細胞凋亡的調控機轉………………………………………...…..16
1.5研究動機與目的…………………………………………...……..19

第二章:材料與方法………………………………………….…21
2.1 化學試藥與溶液之配製…………………………………………22
2.2 西方點墨法試劑、緩衝溶液以及抗體………………………….26
2.3 實驗動物…………………………………………………………28
2.4 敗血症之動物模式………………………………………………29
2.5 心臟組織之萃取…………………………………………………30
2.6 蛋白質濃度測定…………………………………………………31
2.7 西方點墨法測定…………………………………………………32
2.8 組織化學法分析…………………………………………………35
2.9 超顯微結構之觀察………………………………………………38
2.10資料分析……………………………………………………...…39

第三章:實驗結果……………………………………………….40
3.1 盲腸結紮刺孔手術後實驗動物之評估…………………………41
3.2 正常生理情形下,心室之不同區域中各種蛋白激酶C同功酶的表現………………………………………………………………41
3.3 敗血症時期於心室之不同區域中磷酸態蛋白激酶C同功酶ε的表現………………………………………………………………42
3.4 敗血症時期於心室不同區域中蛋白激酶C同功酶ε的表現….43
3.5 敗血症時期於心室不同區域中細胞凋亡之變化………………44
3.6 敗血症時期於心室不同區域中助細胞凋亡蛋白Bad的表現…45
3.7 敗血症時期於心室不同區域中粒腺體超顯微結構之變化……47
3.8 附圖與表…………………………………………………………47

第四章:綜合討論………………………………………………..61

第五章:參考資料………………………………………………..67
1.Bone RC. The sepsis syndrome. Definition and general approach to management. Clin Chest Med. 1996;17:175-81.
2.Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med. 1999;340:207-14.
3.Jacobi J. Pathophysiology of sepsis. Am J Health Syst Pharm. 2002;59 Suppl 1:S3-8.
4.Livingston DH, Mosenthal AC, Deitch EA. Sepsis and multiple organ dysfunction syndrome: a clinical-mechanistic overview. New Horiz. 1995;3:257-66.
5.Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303-10.
6.Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348:138-50.
7.Liu MS, Ghosh S. Myocardial sodium pump activity in endotoxin shock. Circ Shock. 1986;19:177-84.
8.Liu MS, Xuan YT. Mechanisms of endotoxin-induced impairment in Na+-Ca2+ exchange in canine myocardium. Am J Physiol. 1986;251:R1078-85.
9.Mohammed FI, Liu MS. Impairment in the phosphorylation of canine cardiac sarcoplasmic reticulum following endotoxin administration. J Mol Cell Cardiol. 1990;22:587-98.
10.Liu MS, Wu LL. Reduction in the Ca2(+)-induced Ca2+ release from canine cardiac sarcoplasmic reticulum following endotoxin administration. Biochem Biophys Res Commun. 1991;174:1248-54.
11.Wu LL, Liu MS. Impaired calcium uptake by cardiac sarcoplasmic reticulum and its underlying mechanism in endotoxin shock. Mol Cell Biochem. 1991;108:9-17.
12.Liu MS, Wu LL. Heart sarcolemmal Ca2+ transport in endotoxin shock: II. Mechanism of impairment in ATP-dependent Ca2+ transport. Mol Cell Biochem. 1992;112:135-42.
13.Wu LL, Liu MS. Altered ryanodine receptor of canine cardiac sarcoplasmic reticulum and its underlying mechanism in endotoxin shock. J Surg Res. 1992;53:82-90.
14.Tang C, Liu MS. Initial externalization followed by internalization of beta-adrenergic receptors in rat heart during sepsis. Am J Physiol. 1996;270:R254-63.
15.Tang C, Hsu HK, Chen XY, Liu MS. Externalization and internalization of (Na+ + K+)-ATPase in rat heart during different phases of sepsis. Circ Shock. 1993;41:19-25.
16.Wu LL, Tang C, Liu MS. Hyper- and hypocardiodynamic states are associated with externalization and internalization, respectively, of alpha-adrenergic receptors in rat heart during sepsis. Shock. 1997;7:318-23.
17.Grocott-Mason RM, Shah AM. Cardiac dysfunction in sepsis: new theories and clinical implications. Intensive Care Med. 1998;24:286-95.
18.Smith LW, Winbery SL, Barker LA, McDonough KH. Cardiac function and chronotropic sensitivity to beta-adrenergic stimulation in sepsis. Am J Physiol. 1986;251:H405-12.
19.Barker LA, Winbery SL, Smith LW, McDonough KH. Supersensitivity and changes in the active population of beta adrenoceptors in rat right atria in early sepsis. J Pharmacol Exp Ther. 1990;252:675-82.
20.Vincent JL, Reuse C, Frank N, Contempre B, Kahn RJ. Right ventricular dysfunction in septic shock: assessment by measurements of right ventricular ejection fraction using the thermodilution technique. Acta Anaesthesiol Scand. 1989;33:34-8.
21.Redl G, Germann P, Plattner H, Hammerle A. Right ventricular function in early septic shock states. Intensive Care Med. 1993;19:3-7.
22.Ellrodt AG, Riedinger MS, Kimchi A, Berman DS, Maddahi J, Swan HJ, Murata GH. Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J. 1985;110:402-9.
23.Baker CC, Chaudry IH, Gaines HO, Baue AE. Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery. 1983;94:331-5.
24.Ayala A, Perrin MM, Kisala JM, Ertel W, Chaudry IH. Polymicrobial sepsis selectively activates peritoneal but not alveolar macrophages to release inflammatory mediators (interleukins-1 and -6 and tumor necrosis factor). Circ Shock. 1992;36:191-9.
25.Fink MP, Heard SO. Laboratory models of sepsis and septic shock. J Surg Res. 1990;49:186-96.
26.Hollenbach SJ, DeGuzman LR, Bellamy RF. Early administration of methylprednisolone promotes survival in rats with intra-abdominal sepsis. Circ Shock. 1986;20:161-8.
27.Jin YW, Yang SL, Hsu HK, Wu SN, Liu MS. [Kinetic studies of protein kinase A in rat liver during late sepsis]. Gaoxiong Yi Xue Ke Xue Za Zhi. 1992;8:460-70.
28.Sun YM, Yang SL, Jin YW, Wu SN, Hsu HK, Liu MS. [Kinetic studies of protein kinase A in rat liver during early sepsis]. Gaoxiong Yi Xue Ke Xue Za Zhi. 1993;9:80-8.
29.Yang SL, Hsu C, Lue SI, Hsu HK, Liu MS. Protein kinase a activity is increased in rat heart during late hypodynamic phase of sepsis. Shock. 1997;8:68-72.
30.Yang SL, Hsu C, Lue SI, Hsu HK, Yang J, Liu MS. Protein kinase C activity is increased in rat heart during the early hyperdynamic phase of sepsis. Shock. 1998;9:199-203.
31.Hsu C, Jao HC, Yang SL, Hsu HK, Liu MS. Inactivation of protein kinase C in rat liver during late hypoglycemic phase of sepsis. Mol Cell Biochem. 1998;181:181-9.
32.Hsu C, Yang SL, Hsu SP, Hsu HK, Liu MS. Differential activation of protein kinase A in various regions of myocardium during sepsis. J Surg Res. 1997;71:161-5.
33.Jao HC, Yang RC, Hsu HK, Hsu C. The decrease of PKCalpha is associated with hepatic apoptosis at early and late phases of polymicrobial sepsis. Shock. 2001;15:130-4.
34.Burnstock G. Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev. 1969;21:247-324.
35.Kent KM, Epstein SE, Cooper T, Jacobowitz DM. Cholinergic innervation of the canine and human ventricular conducting system. Anatomic and electrophysiologic correlations. Circulation. 1974;50:948-55.
36.Fedida D, Braun AP, Giles WR. Alpha 1-adrenoceptors in myocardium: functional aspects and transmembrane signaling mechanisms. Physiol Rev. 1993;73:469-87.
37.Terzic A, Puceat M, Vassort G, Vogel SM. Cardiac alpha 1-adrenoceptors: an overview. Pharmacol Rev. 1993;45:147-75.
38.Raum WJ, Laks MM, Garner D, Swerdloff RS. Beta-adrenergic receptor and cyclic AMP alterations in the canine ventricular septum during long-term norepinephrine infusion: implications for hypertrophic cardiomyopathy. Circulation. 1983;68:693-9.
39.Ganguly PK, Dhalla KS, Shao Q, Beamish RE, Dhalla NS. Differential changes in sympathetic activity in left and right ventricles in congestive heart failure after myocardial infarction. Am Heart J. 1997;133:340-5.
40.Sethi R, Dhalla KS, Beamish RE, Dhalla NS. Differential changes in left and right ventricular adenylyl cyclase activities in congestive heart failure. Am J Physiol. 1997;272:H884-93.
41.Bernstein D, Voss E, Huang S, Doshi R, Crane C. Differential regulation of right and left ventricular beta-adrenergic receptors in newborn lambs with experimental cyanotic heart disease. J Clin Invest. 1990;85:68-74.
42.Lee WC, Lin KY, Chiu YT, Lin JH, Cheng HC, Huang HC, Yang PC, Liu SK, Mao SJ. Substantial decrease of heat shock protein 90 in ventricular tissues of two sudden-death pigs with hypertrophic cardiomyopathy. Faseb J. 1996;10:1198-204.
43.Golf S, Andersen D, Hansson V. Beta adrenoceptor density and adenylate cyclase response in right atrial and left ventricular myocardium of patients with mitral valve disease. Cardiovasc Res. 1986;20:331-6.
44.Takai Y, Kishimoto A, Inoue M, Nishizuka Y. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. I. Purification and characterization of an active enzyme from bovine cerebellum. J Biol Chem. 1977;252:7603-9.
45.Mochly-Rosen D, Kauvar LM. Modulating protein kinase C signal transduction. Adv Pharmacol. 1998;44:91-145.
46.Stabel S, Parker PJ. Protein kinase C. Pharmacol Ther. 1991;51:71-95.
47.Schnaper HW. Signal transduction through protein kinase C. Pediatr Nephrol. 2000;14:254-8.
48.Sugden PH, Bogoyevitch MA. Intracellular signalling through protein kinases in the heart. Cardiovasc Res. 1995;30:478-92.
49.Liu JP. Protein kinase C and its substrates. Mol Cell Endocrinol. 1996;116:1-29.
50.Keranen LM, Dutil EM, Newton AC. Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr Biol. 1995;5:1394-1403.
51.Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986;233:305-12.
52.Hefti MA, Harder BA, Eppenberger HM, Schaub MC. Signaling pathways in cardiac myocyte hypertrophy. J Mol Cell Cardiol. 1997;29:2873-92.
53.Romanova LY, Alexandrov IA, Schwab G, Hilbert DM, Mushinski JF, Nordan RP. Mechanism of apoptosis suppression by phorbol ester in IL-6-starved murine plasmacytomas: role of PKC modulation and cell cycle. Biochemistry. 1996;35:9900-6.
54.MacLeod KT, Harding SE. Effects of phorbol ester on contraction, intracellular pH and intracellular Ca2+ in isolated mammalian ventricular myocytes. J Physiol. 1991;444:481-98.
55.Teutsch I, Weible A, Siess M. Differential inotropic and chronotropic effects of various protein kinase C activators on isolated guinea pig atria. Eur J Pharmacol. 1987;144:363-7.
56.Liu Y, Ytrehus K, Downey JM. Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium. J Mol Cell Cardiol. 1994;26:661-8.
57.Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, Bolli R. Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res. 1997;81:404-14.
58.Steinberg SF, Goldberg M, Rybin VO. Protein kinase C isoform diversity in the heart. J Mol Cell Cardiol. 1995;27:141-53.
59.Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res. 1980;29:189-201.
60.Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA, Messing RO. Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol. 2000;279:L429-38.
61.Ohno S, Akita Y, Konno Y, Imajoh S, Suzuki K. A novel phorbol ester receptor/protein kinase, nPKC, distantly related to the protein kinase C family. Cell. 1988;53:731-41.
62.Akita Y. Protein kinase C-epsilon (PKC-epsilon): its unique structure and function. J Biochem (Tokyo). 2002;132:847-52.
63.Cenni V, Doppler H, Sonnenburg ED, Maraldi N, Newton AC, Toker A. Regulation of novel protein kinase C epsilon by phosphorylation. Biochem J. 2002;363:537-45.
64.Paul K, Ball NA, Dorn GW, 2nd, Walsh RA. Left ventricular stretch stimulates angiotensin II--mediated phosphatidylinositol hydrolysis and protein kinase C epsilon isoform translocation in adult guinea pig hearts. Circ Res. 1997;81:643-50.
65.Takeishi Y, Bhagwat A, Ball NA, Kirkpatrick DL, Periasamy M, Walsh RA. Effect of angiotensin-converting enzyme inhibition on protein kinase C and SR proteins in heart failure. Am J Physiol. 1999;276:H53-62.
66.Goldberg M, Zhang HL, Steinberg SF. Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes. J Clin Invest. 1997;99:55-61.
67.Wu G, Toyokawa T, Hahn H, Dorn GW, 2nd. Epsilon protein kinase C in pathological myocardial hypertrophy. Analysis by combined transgenic expression of translocation modifiers and Galphaq. J Biol Chem. 2000;275:29927-30.
68.Liu GS, Cohen MV, Mochly-Rosen D, Downey JM. Protein kinase C-epsilon is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol. 1999;31:1937-48.
69.Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y, Bolli R, Cardwell EM, Ping P. Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res. 2003;92:873-80.
70.Mahidhara R, Billiar TR. Apoptosis in sepsis. Crit Care Med. 2000;28:N105-13.
71.Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239-57.
72.Wyllie AH. Apoptosis: cell death under homeostatic control. Arch Toxicol Suppl. 1987;11:3-10.
73.Nishimura H, Emoto M, Kimura K, Yoshikai Y. Hsp70 protects macrophages infected with Salmonella choleraesuis against TNF-alpha-induced cell death. Cell Stress Chaperones. 1997;2:50-9.
74.Hiramatsu M, Hotchkiss RS, Karl IE, Buchman TG. Cecal ligation and puncture (CLP) induces apoptosis in thymus, spleen, lung, and gut by an endotoxin and TNF-independent pathway. Shock. 1997;7:247-53.
75.Beranek JT. Cardiomyocyte apoptosis contributes to the pathology of the septic shock heart. Intensive Care Med. 2002;28:218; author reply 219.
76.Gustafsson AB, Gottlieb RA. Mechanisms of apoptosis in the heart. J Clin Immunol. 2003;23:447-59.
77.Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335:1182-9.
78.Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigon M, Fontaine G. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med. 1996;335:1190-6.
79.Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM. Apoptosis in human acute myocardial infarction. Circulation. 1997;95:320-3.
80.Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996;79:949-56.
81.Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B. The biochemistry of programmed cell death. Faseb J. 1995;9:1277-87.
82.Vander Heiden MG, Thompson CB. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol. 1999;1:E209-16.
83.Akao Y, Otsuki Y, Kataoka S, Ito Y, Tsujimoto Y. Multiple subcellular localization of bcl-2: detection in nuclear outer membrane, endoplasmic reticulum membrane, and mitochondrial membranes. Cancer Res. 1994;54:2468-71.
84.Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993;53:4701-14.
85.Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999;397:441-6.
86.Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275:1129-32.
87.Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997;3:614-20.
88.Franke TF, Cantley LC. Apoptosis. A Bad kinase makes good. Nature. 1997;390:116-7.
89.Whelan RD, Parker PJ. Loss of protein kinase C function induces an apoptotic response. Oncogene. 1998;16:1939-44.
90.Bertolotto C, Maulon L, Filippa N, Baier G, Auberger P. Protein kinase C theta and epsilon promote T-cell survival by a rsk-dependent phosphorylation and inactivation of BAD. J Biol Chem. 2000;275:37246-50.
91.Ding L, Wang H, Lang W, Xiao L. Protein kinase C-epsilon promotes survival of lung cancer cells by suppressing apoptosis through dysregulation of the mitochondrial caspase pathway. J Biol Chem. 2002;277:35305-13.
92.Cai H, Smola U, Wixler V, Eisenmann-Tappe I, Diaz-Meco MT, Moscat J, Rapp U, Cooper GM. Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Mol Cell Biol. 1997;17:732-41.
93.Majewski M, Nieborowska-Skorska M, Salomoni P, Slupianek A, Reiss K, Trotta R, Calabretta B, Skorski T. Activation of mitochondrial Raf-1 is involved in the antiapoptotic effects of Akt. Cancer Res. 1999;59:2815-9.
94.Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature. 1993;364:249-52.
95.Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, Bolli R, Ping P. Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res. 2002;90:390-7.
96.Papathanassoglou ED, Moynihan JA, Ackerman MH. Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med. 2000;28:537-49.
97.Piper RD, Li FY, Myers ML, Sibbald WJ. Structure-function relationships in the septic rat heart. Am J Respir Crit Care Med. 1997;156:1473-82.
98.Schwartz SM, Duffy JY, Pearl JM, Nelson DP. Cellular and molecular aspects of myocardial dysfunction. Crit Care Med. 2001;29:S214-9.
99.Miyamoto E, Kuo JF, Greengard P. Cyclic nucleotide-dependent protein kinases. 3. Purification and properties of adenosine 3'',5''-monophosphate-dependent protein kinase from bovine brain. J Biol Chem. 1969;244:6395-402.
100.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
101.Hunzicker-Dunn M, Cutler RE, Jr., Maizels ET, DeManno DA, Lamm ML, Erlichman J, Sanwal BD, LaBarbera AR. Isozymes of cAMP-dependent protein kinase present in the rat corpus luteum. J Biol Chem. 1991;266:7166-75.
102.Wilkinson SE, Hallam TJ. Protein kinase C: is its pivotal role in cellular activation over-stated? Trends Pharmacol Sci. 1994;15:53-7.
103.Harrington EO, Loffler J, Nelson PR, Kent KC, Simons M, Ware JA. Enhancement of migration by protein kinase Calpha and inhibition of proliferation and cell cycle progression by protein kinase Cdelta in capillary endothelial cells. J Biol Chem. 1997;272:7390-7.
104.Harris RA, McQuilkin SJ, Paylor R, Abeliovich A, Tonegawa S, Wehner JM. Mutant mice lacking the gamma isoform of protein kinase C show decreased behavioral actions of ethanol and altered function of gamma-aminobutyrate type A receptors. Proc Natl Acad Sci U S A. 1995;92:3658-62.
105.Hodge CW, Mehmert KK, Kelley SP, McMahon T, Haywood A, Olive MF, Wang D, Sanchez-Perez AM, Messing RO. Supersensitivity to allosteric GABA(A) receptor modulators and alcohol in mice lacking PKCepsilon. Nat Neurosci. 1999;2:997-1002.
106.Murray NR, Davidson LA, Chapkin RS, Clay Gustafson W, Schattenberg DG, Fields AP. Overexpression of protein kinase C betaII induces colonic hyperproliferation and increased sensitivity to colon carcinogenesis. J Cell Biol. 1999;145:699-711.
107.Murray NR, Fields AP. Atypical protein kinase C iota protects human leukemia cells against drug-induced apoptosis. J Biol Chem. 1997;272:27521-4.
108.Wetsel WC, Khan WA, Merchenthaler I, Rivera H, Halpern AE, Phung HM, Negro-Vilar A, Hannun YA. Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol. 1992;117:121-33.
109.Akimoto K, Mizuno K, Osada S, Hirai S, Tanuma S, Suzuki K, Ohno S. A new member of the third class in the protein kinase C family, PKC lambda, expressed dominantly in an undifferentiated mouse embryonal carcinoma cell line and also in many tissues and cells. J Biol Chem. 1994;269:12677-83.
110.Osada S, Mizuno K, Saido TC, Akita Y, Suzuki K, Kuroki T, Ohno S. A phorbol ester receptor/protein kinase, nPKC eta, a new member of the protein kinase C family predominantly expressed in lung and skin. J Biol Chem. 1990;265:22434-40.
111.Chang JD, Xu Y, Raychowdhury MK, Ware JA. Molecular cloning and expression of a cDNA encoding a novel isoenzyme of protein kinase C (nPKC). A new member of the nPKC family expressed in skeletal muscle, megakaryoblastic cells, and platelets. J Biol Chem. 1993;268:14208-14.
112.Bogoyevitch MA, Parker PJ, Sugden PH. Characterization of protein kinase C isotype expression in adult rat heart. Protein kinase C-epsilon is a major isotype present, and it is activated by phorbol esters, epinephrine, and endothelin. Circ Res. 1993;72:757-67.
113.Rybin VO, Steinberg SF. Protein kinase C isoform expression and regulation in the developing rat heart. Circ Res. 1994;74:299-309.
114.Albert CJ, Ford DA. Protein kinase C translocation and PKC-dependent protein phosphorylation during myocardial ischemia. Am J Physiol. 1999;276:H642-50.
115.Chen HW, Hsu C, Lu TS, Wang SJ, Yang RC. Heat shock pretreatment prevents cardiac mitochondrial dysfunction during sepsis. Shock. 2003;20:274-9.
116.Watts JA, Kline JA, Thornton LR, Grattan RM, Brar SS. Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol. 2004;36:141-50.
117.Suleiman MS, Halestrap AP, Griffiths EJ. Mitochondria: a target for myocardial protection. Pharmacol Ther. 2001;89:29-46.
118.Inagaki K, Hahn HS, Dorn GW, 2nd, Mochly-Rosen D. Additive protection of the ischemic heart ex vivo by combined treatment with delta-protein kinase C inhibitor and epsilon-protein kinase C activator. Circulation. 2003;108:869-75.
119.Dorn GW, 2nd, Souroujon MC, Liron T, Chen CH, Gray MO, Zhou HZ, Csukai M, Wu G, Lorenz JN, Mochly-Rosen D. Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase C translocation. Proc Natl Acad Sci U S A. 1999;96:12798-803.
120.Chen L, Hahn H, Wu G, Chen CH, Liron T, Schechtman D, Cavallaro G, Banci L, Guo Y, Bolli R, Dorn GW, 2nd, Mochly-Rosen D. Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci U S A. 2001;98:11114-9.
121.Chen C, Mochly-Rosen D. Opposing effects of delta and xi PKC in ethanol-induced cardioprotection. J Mol Cell Cardiol. 2001;33:581-5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. (13) 盧飛山(1991),我國期貨交易之演變”,【中信通訊】,民國八十年一月,50-54頁。
2. 王高成:<柯林頓的中共經貿政策>,《美歐月刊》,第11卷第2期(民國85年2月)。
3. (16) 饒孟友(1992),我國期貨市場發展階段及考慮因素”,【中信通訊】,民國八十一年十一月,29-32頁。
4. (16) 饒孟友(1992),我國期貨市場發展階段及考慮因素”,【中信通訊】,民國八十一年十一月,29-32頁。
5. (14) 錢國基(1995), “台灣期貨業之現況與展望”,【產業經濟】,民國八十四年,第一六八期,26-47頁。
6. (14) 錢國基(1995), “台灣期貨業之現況與展望”,【產業經濟】,民國八十四年,第一六八期,26-47頁。
7. 王高成:<柯林頓的中共經貿政策>,《美歐月刊》,第11卷第2期(民國85年2月)。
8. (13) 盧飛山(1991),我國期貨交易之演變”,【中信通訊】,民國八十年一月,50-54頁。
9. (8) 黃敏助、蔡培玄(1986),“信用合作社規模經濟問題之研究”,【基層金融】,民國七十五年九月,129-163頁。
10. (8) 黃敏助、蔡培玄(1986),“信用合作社規模經濟問題之研究”,【基層金融】,民國七十五年九月,129-163頁。
11. (5) 林基煌(1992),“我國經濟券商經濟規模之研究-民國七十九年之實證分析”,【國立政治大學學報】,民國八十一年九月,第六十五期,305-350頁。
12. (5) 林基煌(1992),“我國經濟券商經濟規模之研究-民國七十九年之實證分析”,【國立政治大學學報】,民國八十一年九月,第六十五期,305-350頁。
13. (4) 呂秋玉(1992),“多元化產出隻金融機構規模經濟與範圍經濟-台灣第區信用合作社之個案研究”,【合作經濟】,民國八十一年,第三期,24-41頁。
14. (4) 呂秋玉(1992),“多元化產出隻金融機構規模經濟與範圍經濟-台灣第區信用合作社之個案研究”,【合作經濟】,民國八十一年,第三期,24-41頁。
15. (1) 王國樑、余威廷 (1995),“台灣證券業規模與多樣化經濟之探討”,【證券市場發展】,民國八十四年七月,125-144頁。