跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖志倫
研究生(外文):Liao Chin
論文名稱:以表面聲波感測器為作業環境偵測氨氣方法之探討
論文名稱(外文):Work Environment Monitoring ammonia detection using SAW Sensor Devices
指導教授:鍾相彬賴永昌賴永昌引用關係
指導教授(外文):S.B JongYu-Chang Lai
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:職業安全衛生研究所碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:中文
論文頁數:94
中文關鍵詞:感測器胺氣表面聲波濾波器氨氣
外文關鍵詞:ammoniaSurface acoustic wavepolyaniline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表面聲波元件感測器的原理是聲波傳遞表面的變化,造成其輸出相位和介入損耗的改變,而這些變化可經由量測聲波諧震頻率特性來測得。由於表面聲波對於感測物質變化極為敏感,所以本次研究即是想探討表面聲波元件是否可以作為另一種環境監測方法之探討。氣體感測膜的選擇也是主要問題,因為polymer material 對於所要偵檢的氣體/液體要有吸附性,這次所要選擇偵測的氨氣,我們所選擇的polymer 是polyaniline(聚苯胺),為本身具有導電性之共軛聚合物(conjugated polymer),具有良好化學穩定性、及容易製備合成。
Surface Acoustic Wave Nano-gram Balance 的測量原理是化學物質通過晶片表面產生交互作用(interactioins),交互作用是由於三種因素:mass loading;viscoelastic effects及permittivity effect。而氣相物質的量測原理是當感測氣體流過晶片表面時會因為mass loading而產生聲波諧震頻率特性和晶片上所塗布的polymer 產生作用。
由研究的成果可知聚苯胺感測塗層對於偵測氨氣具有極佳的靈敏度、回復性、再現性及選擇性。當操作溫度控制在30℃時,氨氣濃度與反應量的曲線呈現最佳的線性度與靈敏度,該靈敏度為0.0097 ppm/Hz,最低可偵測極限推測為1ppm的氨氣。
Thin film coated SAW device has been proposed in the hazardous gas detection in this study. The absorption of the toxic gas passing through a SAW sensor can change the base resonance frequency due to the mass loading effect. By observing and measurement of the acoustic frequency variation on the SAW channel we can detect the presence of the environmental offensive gases. As a demonstration purpose, we selected the ammonia gas as our target media and used of the polyaniline (PANi) thin film as a coated-sensing polymer. The SAW semiconductor chips were designed and proto-type tested using IDTs electrodes on a LiNbO3 base with an assuming operating conditions of 25~30℃ at 1 atm. The conjugated polymers were also selected, based on their chemical stability and easy preparation, to be EB (polyaniline emeraldine base) and NMP(1-methyl-2-pyrrolidinone). These polymers were spraying-coated on the top of the SAW chip set with PANi EB to NMP at a ratio of 1:9. Standard ammonia gases concentrations were prepared by dilution method using dry nitrogen and have been used in the tests to verify the detection sensitivity.
Ammonia gases with varying concentration have been conducted in the tests using thin film of PANi polymer coated on SAW devices. Ammonia gas mixed with dry nitrogen started at 80ppm as an upper bound has been tried out continuously to lower concentrations by dilution method. As an initial result, the SAW device has a low detection response at about 30ppm.in an operating temperature at 30℃. We also found that the coating technique of the polymer and the homogeneity of mixing gases would strongly affect the detection outcomes.
We have demonstrated that the SAW devices can be used as toxic or offensive gas sensors based on mass-loading technique. The on-going research will be focused on the study of the stability, interferences and optimization of this extremely high sensitive probe in the work environment monitoring applications
中文摘要..................................... I
英文摘要..................................... II
目錄......................................... III
圖目錄.... ................................ . VI
表目錄.... ................................ . IX
第一章 緒論................................. .1
1.1 研究背景.............................. 1
1.2 研究動機.............................. 11
1.3 研究流程.............................. 15
第二章 文獻回顧.............................. 16
2.1 壓電效應及指叉狀電極................. 16
2.1.1 壓電材料.......................... 18
2.1.2 指叉換能器(IDTs) .................. 19
2.2 表面聲波濾波器..................... .. 21
2.2.1 表面聲波感測器製程原理............ 22
2.2.2 表面聲波感測器感測原理............ 24
2.2.3 化學氣體/聚合物塗層................ 28
2.2.4 氣體動力吸附原理.................. 29
2.3 溫溼度及環境因子的................... 30
2.4 SAW化學感測器目前應用情況........... 32
2.5 量測技術與方法....................... 34
第三章 材料與方法............................ 36
3.1 SAW 感測平台儀器及感測晶片........... 36
3.2表面塗層聚合物材料.................... 40
3.3聚合物塗層法.......................... 44
3.4 化學實驗氣體......................... 47
3.5 實驗器材............................. 48
3.6 實驗步驟............................. 52
第四章 研究結果.............................. 56
4.1 SAW感測元件塗層聚合物與氨氣濃度關係 56
4.2.偵測極限. ............................ 59
4.3氣體量測與溫度關係.................... 60
第五章 研究討論. ............................ 64
5.1聚合物被覆在SAW表面可能變因之探討... 64
5.2各種可能影響偵測結果干擾.............. 65
5.3敏感度 ............................... 66
5.4偵測濃度之範圍..................... .. 67
5.5再生性............................. .. 69
5.6氣體與聚合物之反應與感測膜膜厚關係.... 70
第六章 結論與建議............................ 71
參考文獻................................. ... 73
附表................................. ....... 76
附圖................................. ....... 80
1.Lord Rayleigh, ”On waves propagated along the plane surface of an elastic solid, ”Proc. London Math.Soc.,vol.17,pp.4-11,1885.
2.R.M. White, and F.W. Voltmer, April.Phys.Lett.17, 1965.
3.J. F. Vetelino, R. K. Lade and R. S. Falconer, “Hydrogen sulfide surface acoustic wave gas detector ”,IEEE Transactions on Ultrasonics ,Ferroelectrics, and Frequency Control,vol.UFFC-34, no.2 pp.156-161,1987.
4.Y. V. Gulayev, “On the nonlinear theory of ultrasound amplification in semiconductors, “,IEEE Transactions on Sonics and Ultrasonics, Vol. SU-17, no.2, pp. 111-122,1970.
5.V. Cahplanov, V. Filippov and A. Terentjev, “Sensitivity of Pd/SiO2/Si sensor to humidity,” Sensors and Acoustors B. vol.5, pp.187-188 1991.
6.R. Alder, “Simple theory of acoustic amplification”, IEEE Transactions on Sonics and Ultrasonics, vol.SU-18,no.3, pp.115-118,1991.
7.A. J. Ricco and S. J. Martin, “Multiple-frequency SAW devices for chemical sensing and matericals characterization,”, Sens. Actuators B. vol. 10, pp.123-133,1993.
8.F. Josse, D. T. Haworth, U. R. Kelkar and Z. A. Shanna,” LiNbO3 Acoustic Plate Mode Sensors for Dulute Iionic Solutions,” Electron Lett, no.26, pp. 834-835, 1990.
9.T. Moriizumi, Y. Unno and S. Shiokawa,” New Sensor in liquid Using Leaky SAW”, IEEE Ultrasonic Symposium Proc. Pp.579-582, 1987.
10.F. Josse, D. T. Haworth, U. R. Kelkar and Z. A. Shana, “LiNbO3 acoustic plate mode sensors for dulute ionic solutions,”Elertron. Lett,vol. 26, pp.834-835, 1990.
11.J. Andle, J. Vetelino, R. Lee and D.McAllister,” An acoustic plate mode immunosensor, “Proc.IEEE Ultrasonic Symp. Pp.579-584.1989.
12.T. Morizumi, Y. Unno and S. Shiokawa,”New sensor in liquid using leaky SAW “,Proc. IEEE Ultrasonic Symp. Pp.579-582,1987.
13.L. Tessier, F. Patat, N. Schmit, L. Pourcelot, Y. Frangin and D. Guilloteau,” AT-cut quartz crystal biosensor for blood assay,” in Proc.Ultrasonics Int. 93,Vienna,Austria,pp.627-630,1993.
14.J. Frank, H. Mexiner, Sensor system for indoor air monitoring using semiconducting meteal oxides and IR-absorption , Sensor Actuators B. no.78,pp.298-302,2001.
15.A. Griesinger, K. Spindler, E. Hahne, Measurement and theoretical modeling of the effective thermal conductivity of Zeolites, International J. of Heat & Mass Transfer ,no.421, pp.4363-4374.
16.Cheryl M. Harris, Seeing SAW Potential, Analytical Chemical Aug.1,2003.
17.D.S. Ballantine, R.M.White, S.J. Martin, A.J. Ricco, G.C. Frye, H. Wholtjen, E.T. Zellers, Acoustic Wave Sensors : Theory, Design and Physio-chemical Applications,Academic Press, New York,1997.
18.M.S. Nieuwenhuizen, J.L.N. Harteveld,An automated SAW gas sensor testing system, Sens. Actuators B. no.44,pp.219-229,1994.
19.Clifford, K. Ho, Eric R. Lindgeren, K. Scott Rawlinson, Development of Acoustic Sensor for In-Situ Monitoring of Voltaile Compounds, SENSORS, no.3,pp.236-247,2003.
20.Potyailo, R. A. T.M. Sivavec, and A.A.Bracco,2001, Field Evaluation of Acoustic Wave Chemical Sensors for monitoring of solvents in groundwater, GE Research & Development Center Report 2000CRD092,2001.
21.J.F. Shackelford, Introduction to materials Science for Engineer,4th Ed, Prentice-Hall, Inc. New Jersey,1985.
22.E.A.Gerber and A. Ballato, Preision Frequency Control, vol.1,Academic Press,Inc, New Jersey,1985.
23.H. Wohltjen, ”Chemical sensing with surface acoustic wave devices”, A Sawtek Company, 1996.
24.H. Wohltjen, A. Snow and D. Ballantine, “The Selective Detection of Vapors using surface acoustic wave devices”, U.S. Naval Research Laboratory.1995.
25.吳朗, Che mistry ,59,2,279,2001.
26.J.Stejskal, I. Sapurina, J. Prokes, J. Zemek, Syhth. Met. 105, pp.195-202,1999.
27.A.P. Monkman, M.C. Petty, N.E. Agbor, M.T. Scully, US. Patent No. 5536473,16 July 1996.
28.E.M. Genies, A. Boyle, M. Lapkowai, C. Tsintavis,Synth. Met. No.36,139,1990.
29.S.K. Dhawan, D. Kumar, “Application of conducting polyaniline as sensor material for ammonia”, Sensors. Actuators B. no.40, pp.99-103,1997.
30.D.N. Debarnot, F.C. Epailard, “Polyaniline as a new sensitive layer for gas sensors”, Analytica Chimina. Acta. , no.475, pp.1-15,2003.
31.林佑展, “以表面聲波偵測有機蒸氣之驗證’,國立台灣大學,June,2002.
32.沈煜堂,”表面聲波化學感測器之研製與應用”, 義守大學,June,1999.
33.黃仕泓,柯政浩, “表面聲波感測器之前瞻研究”,物理雙月刊(23卷6期),June,2004年.
34.Michele Penza, “Surface Acoustic Wave Devices for gas sensing application”, PASTIS-CNRSN S.C.p.A, SS.7,Appia, Km,72100.
35.Joshua J. Caron, Reichi B.,”A Surface Acoustic Wave Mercury Vapor Sensor” ,IEEE International Ferquency Control Sypposium,1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊