(3.235.25.169) 您好!臺灣時間:2021/04/17 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:粘志成
研究生(外文):NienChih-Cheng
論文名稱:製程條件對鋁誘發非晶矽薄膜結晶影響之研究
論文名稱(外文):Study of Aluminum Induced Crystallization with Different Process Conditions on Amorphous Silicon Film
指導教授:朱孝業朱孝業引用關係陳恕行
指導教授(外文):Hsiao-Yeh ChuShu-Hsing Chen
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
論文頁數:122
中文關鍵詞:鋁金屬誘發再結晶低溫多晶矽多晶矽退火時間殘留應力濺鍍功率
外文關鍵詞:sputtering powerpoly-crystalline siliconaluminum induced crystallizationlow temperature poly siliconannealing time.
相關次數:
  • 被引用被引用:10
  • 點閱點閱:1317
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
本研究是在玻璃基板製備低溫多晶矽薄膜,以及其電性和機械性質之量測為主要研究方向。
本研究之第一部分係針對二種不同厚度之鋁膜及非晶矽膜以不同的退火時間來探討多晶矽薄膜之各項特性,另一部分是在濺鍍製程中,藉由控制直流磁控濺鍍機之以直流功率沉積不同表面粗糙度的鋁金屬膜,探討不同表面粗糙度的鋁膜對金屬誘發結晶的多晶矽膜之影響。從研究結果中得知,退火時間達到1小時之後,其多晶矽膜之XRD矽峰值強度之變化便由大幅上升而趨於平緩,顯示1小時可做為誘發多晶矽膜完全結晶之最少時間。另外在不同濺鍍功率測試結果得知,濺鍍功率為200 W至400 W是多晶矽薄膜殘留應力較小之最佳濺鍍功率範圍,觀察發現在超過800 W時所濺鍍薄膜殘留之壓縮應力過大容易造成多晶矽薄膜破裂。
This study analyzes the material, mechanical and electrical properties of aluminum induced crystallization of poly-silicon film with different process conditions. The process conditions selected to be variables are the annealing period of time, the film thickness of aluminum and silicon layers, and the DC powers of sputter of aluminum film deposition. The poly-crystalline grain size and profile, surface roughness, residual stress of the film, surface and cross-sectional morphology are observed and analyzed.
The results show that the least time period required for fully annealed will be about one hour. The root mean square surface roughness will increase proportionally with the DC power in Al film sputtering. The film residual stress will also increase proportionally with the surface roughness in the compressive direction. As the DC power increase to 1600 W, the poly-cryatalline silicon film will crack owning to extensive compressive residual stress of the film. The power suggested for DC sputter is between 200 W from the viewpoint of least residual stress of the film.
摘要 i
英文摘要 ii
誌謝 iv
目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 ix
1-1 前言 1
1-2 研究動機 3
第二章 文獻回顧 8
2-1 認識液晶 8
2-2液晶顯示器的基本原理 9
2-2-1 TFT-LCD的面板構造 9
2-2-2 TFT元件的運作原理 10
2-3 玻璃基板 11
2-4多晶矽薄膜與非晶矽薄膜之特性比較 12
2-5 多晶矽薄膜再結晶之關鍵技術 15
2-5-1 觸媒式化學氣相沉積法(Cat-CVD) 17
2-5-2 雷射(Laser)再結晶法 18
2-5-3 金屬誘發再結晶法(Metal Induced Crystallization ,MIC) 20
2-6太陽能電池 21
第三章 實驗步驟與分析 32
3-1 製程設備 32
3-1-1 濕式蝕刻清洗系統 (Wet bench) 33
3-1-2 金屬濺鍍系統(Sputter) 36
3-1-3電漿輔助式化學氣相沈積&感應耦合式電漿蝕刻系統 (PECVD & ICP) 38
3-1-4 高溫及低壓爐管 (氧化、退火及低壓沉積系統) 40
3-1-5 熱蒸鍍機 (thermal coater) 41
3-2 薄膜性質量測設備 43
3-2-1 X-Ray繞射分析儀 43
3-2-2 拉曼光譜分析儀 45
3-2-4 直流量測系統4145B 47
3-2-5場發射電子顯微鏡 48
3-3 鋁金屬誘發再結晶之特性 53
3-4 鋁金屬誘發再結晶之成長機制 53
3-5 鋁金屬誘發在不同之退火時間之性質研究 55
3-5-1 研究說明 55
3-5-2 製程參數 56
3-6 鋁金屬誘發在不同濺鍍功率之性質研究 58
3-6-1 研究說明 58
3-6-2 製程參數 59
第四章 結果與討論 68
4-1 利用不同之鋁金屬誘發退火時間去探討其性質 68
4-1-1不同退火時間其多晶矽之結晶性 68
4-1-2 Raman光譜分析 69
4-1-3 在不同退火時間之表面形貌 70
4-1-4 不同之退火時間下之活化能 72
4-1-5 在不同之退火時間下之漏電流探討 72
4-2 改變不同濺鍍之DC power 並探討其不同性質之影響 73
4-2-1 不同功率之表面粗糙度探討 73
4-2-2在不同的濺鍍功率下多晶矽薄膜之結晶性 74
4-2-3不同濺鍍功率之結晶形態分析 75
4-2-4 AIC誘發之多晶矽薄膜之殘留應力分析 77
4-2-5 多晶矽薄膜之表面粗糙度量測分析 80
4-2-6 在不同濺鍍功率下之電特性 81
第五章 結論 109
參考文獻 111
附錄一 Corning Eagle 2000 玻璃基板性質 120
附錄二 矽的JCPDS peak對照表 121
自述 122
[1] 陳志強,LTPS低溫複晶矽顯示器技術,全華科技圖書公司,2004.9初版一刷。
[2] 紀國鐘、鄭晃忠,液晶顯示器技術手冊,台灣電子材料與原件協會,2004.4三刷。
[3] 蔡俊偉,彩色手機顯示器的未來趨勢,電子月刊第九卷第八期 2002.8。
[4] 莊達人,VLSI製造技術,高立圖書有限公司,2003.7.20 五版二刷。
[5] 陳添富、葉清發,低溫複晶矽薄膜電晶體關鍵技術,電子月刊第七卷第六期 2001.6。
[6] S W. Lee, Y C. Jeon and S K. Joo, ”Pd induced lateral crystallization of amorphous Si thin films” Appl. Phys. Lett. 66, No. 13, 27 March 1995
[7] 陳志強、張忠恕,低溫複晶矽元件與陣列之可靠度,工業材料雜誌196期2003.4。
[8] 黃文鈺、陳丕夫、陳志強、張忠恕,低溫複晶矽TFT-LCD技術展及未來走向(上),電子與材料雜誌 第15期。
[9] M S. Haque, H A. Naseem, and W D. Brown, “Interaction of aluminum with hydrogenated amorphous silicon at low temperatures”, J. Appl. Phys., Vol. 75, No. 8, 15 April 1994.
[10] O. Nast, “Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon”, J. Appl. Phys. Vol. 88, No. 2, 15 July 2000.
[11] Y. Kawasaki, “Ion doping system for low temperature poly-silicon TFT”, Current Applied Physics (2002) 421-424.
[12] O. Ebil, R. Aparicio, S. Hazra, R. W. Birkmir, E. Sutterb, “Deposition and structural characterization of poly-Si thin films on Al-coated glass substrates using hot-wire chemical vapor deposition”, Thin Solid Films 430 (2003) 120-124.
[13] J. H. Jeon , C. M. Park, K. Y. Choi, C. H. Kim, M. K. Han, “Enlargement of onroff current ratio in poly-silicon TFT by selective crystallization method”, Journal of Non-Crystalline Solids 227– 2301998.1213–1216.
[14] M. J. Siddiqui, S. Qureshi, “An empirical model for leakage current in poly-silicon thin film transistor”, Solid-State Electronics (2000) 2015- 2019.
[15] O. Prache, “Active matrix molecular OLED microdisplays”, Displays 22 (2001) 49-56.
[16] T. Higuchi, M. Kitani, N. Nakamura, J. Hanari, “Effect of the dual-driving method for UXGA series low-temperature poly-si TFT-LCDs ”, Displays 22 (2001) 15-18.
[17] S. Bindra, S. Haldar, R. S. Gupta, “Charge sheet model of a polysilicon thin-film transistor”, Microelectronic Engineering 60 (2002) 381-393.
[18] R. E. I. Schropp, B. Stannowski, J. K. Rath, “New challenges in thin film transistor (TFT) research”, Journal of Non-Crystalline Solids 299-302 (2002) 1304-1310.
[19] H. Azumaa, A. Takeuchia, T. Itoa, H. Fukushimaa, T. Motohiroa, M. Yamaguchib, “Pulsed KrF excimer laser annealing of silicon solar cell”, Solar Energy Materials & Solar Cells (2002) 289-294.
[20] S. Nakahara, “Recent development in a TEM specimen preparation technique using FIB for semiconductor devices”, Surface and Coatings Technology 169 -170 (2003) 721-727.
[21] F. Zhang, X. Liu, G. Ni, Y. Du, “Controlled growth of high-quality poly-silicon thin films with huge grains on glass substrates using an excimer laser”, Journal of Crystal Growth 260 (2004) 102-108.
[22] J. W. Lee, K. Shimizu, J. Hanna, “Deposition of high crystallinity poly-Si films on glass substrate and fabrication of high mobility bottom-gate TFT,” Journal of Non-Crystalline Solids 338-340 (2004) 173-177.
[23] G. Liua, D. J Toncichb, E. C Harveyb, “Evaluation of excimer laser ablation of thin Cr filmon glass substrate by analysing acoustiemission”, Optics and Lasers in Engineering 42 (2004) 639-651.
[24] L S. Hang, F W. Saris, S Q. Wang, J W. Mayer, “Interactions of amorphous alloys with Si substrates and Al overlayers”, J. Appl. Phys.,Vol. 59,No 7, 1 April 1986.
[25] M S. Haque, H A. Naseem, and W D. Brown, “Interaction of aluminum with hydrogenated amorphous silicon at low temperatures”, J. Appl. Phys., Vol. 75, No. 8, 15 April 1994.
[26] S W. Lee, Y C. Jeon and S K. Joo, ”Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett. 66, No. 13, 27 March 1995
[27] M S. Ashtikar and G L. Sharma, ”Silicide mediated low temperature crystallization of hydrogenated morphous silicon in contact with aluminum”, J. Appl. Phys., Vol. 78, No. 2, 15 July 1995.
[28] 汪建民,材料分析,中國材料科學學會,2004.2 三版。
[29] http://140.138.140.197/lcd-main.htm
[30] 施敏,半導體元件物理與製作技術,國立交通大學出版社,2003.9 二刷。
[31] K. Najamura, M A. Nicolet, and J. W. Mayer, ”Interaction of Al layers with polycrystalline Si”, Journal of Applied Physics, Vol. 46, No. 11, Noverber 1975.
[32] M S. Haque, H A. Naseem, and W. D. Brown, ”Aluminum-induced crystallization and counter-doping of phosphorous-doped hydrogenated amorphous silicon at low temperatures”, J. Appl. Phys. Vol. 79, No. 10, 15 May 1996.
[33] Y K. and P. M. Kozlowski, ”Polycrystalline silicon formation by pulsed rapid thermal annealing of amorphous silicon”, Appl. Phys. Lett. 69, No. 8, 19 August 1996.
[34] W S. Liao and S C. Lee, ”Interfacial interaction between Al-1%Si and phosphorus-doped hydrogenated amorphous Si alloy at low temperature”, J. Appl. Phys. Vol. 81, No. 12, 15 June 1997.
[35] T P. Drusedau and J. Blasing, ”Aluminum mediated low temperature growth of crystalline silicon by plasma-enhanced chemical vapor and sputter deposition”, Appl. Phys. Lett 72, No. 12, 27 March 1998.
[36] O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and Stuart R. Wenham, ”Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature”, Appl. Phys. Lett. 73, No. 22, 30 November 1998.
[37] O. Nast, S. Brehme, D. H. Neuhaus, and S R., “Polycrystalline silicon thin films on glass by aluminum-induced crystallization”, Wenham, Senior, Member, IEEE Transactions On Electron Devices, Vol. 46, No 10, October 1999.
[38] O. Nast and S R. Wenham, ”Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization”, J. Appl. Phys. Vol. 88, No. 1, 1 July 2000.
[39] H. Kim, G. Lee, D. Kim, S H. Lee, ”A study of polycrystalline silicon thin films as a seed layer in liquid phase epitaxy using aluminum-induced crystallization”, Current Applied Physics 2 (2002) 129-133.
[40] P I. Widenborg, A G. Aberle, ”Surface morphology of poly-Si films made by aluminium-induced crystallization on glass substrates”, Journal of Crystal Growth 242 (2002) 270-282.
[41] H. Kim, D. Kim, G. Lee, D. Kim, S H. Lee, ” Polycrystalline Si films formed by Al-induced crystallization (AIC) with and without Al oxides at Al/a-Si interface”, Solar Energy Materials & Solar Cells 74 (2002) 323-329.
[42] P. Widenborg, D H. Neuhaus, P. Campbell, A B. Sproul, A G. Aberle, ”Back electrode formation for poly-Si thin film solar cells on glass having AIC-grown seeding layer”, Solar Energy Materials & Solar Cells 74 (2002) 305-314.
[43] H Y. Kim, B. Kim, J U. Bae, K J. H S. Seo,and C D. Kim, ”Kinetics of electric-field-enhanced crystallization of amorphous silicon in contact with Ni catalyst”, Appl. Phys. Lett, Vol. 81, No. 27, 30 December 2002.
[44] D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, M. Kamenova, J.C. Pivin, “Polycrystalline silicon thin films on glass substrate”, Thin Solid Films 451-452(2004)303-307.
[45] E. Pihan, A. Slaoui, P. Roca I Cabarrocas, A. Focsa, ”Polycrystalline silicon thin films on glass substrate”, Thin Solid Films 451-452 (2004) 328-333.
[46] O. Ebil , Roger Aparicio, Sukti Hazra, Robert W.Birkmir e, Eli Sutter, “Deposition and structural characterization of poly-Si thin films on Al-coated glass substrates using hot-wire chemical vapor deposition”, Thin Solid Films 430 (2003) 120-124.
[47] A. Doi, ”Fabrication of uniform poly-Si thin film on glass substrate by AIC”, Thin Solid Films 451-452 (2004)485-488.
[48] C. M. Hsu, I F. Chen and Ming-Chang Yu, ”Stress Effect on Aluminum-Induced Crystallization of Sputtered Amorphous Silicon Thin Films”, Jpn. J. Appl. Phys. Vol. 42, Pt 1 No. 8, August 2003.
[49] P. I. Widenborg, A B. Sproul and A G. Aberle, ”Impurity and defect passivation in poly-Si films fabricated by aluminium-induced crystallisation”, 3rd World Conference on Photovoltaic Energy Conversion May 11-18 4P-B4 20, 2003 Osaka, Japan.
[50] E. Pihan, A. Slaoui, A. Focsa, P. Roca i Cabarrocas, ”Polycrystalline silicon films on ceramic substrates by aluminium-induced crystallisation process”, 3rd World Conference on Photovoltaic Energy Conversion May 11-18. 4P-B4 06, 2003 Osaka,Japan.
[51] A. G. Aberle, P I. Widenborg, A. Straub, and N P. Harder, ” Polycrystalline silicon on glass thin-film solar cell research at unsw using the seed layer concept”, 3rd World Conference on Photovoltaic Energy Conversion May 11-18. 4P-B4 09, 2003 Osaka, Japan.
[52] J. Kim and D. Kim, ”Study of aluminum-induced crystallization process using sputtered Al layer”, 3rd World Conference on Photovoltaic Energy Conversion May 11-18.4P-B4 25, 2003.
[53] Y. D. Son, K. S. Cho, S. Y. Yoo, J. U. Kwak, K. H. Kim, J. Jang, “A p-channel SMC poly-Si thin film-transistor with a GOLDD structure”, Current Applied Physics 2 (2002) 269-272.
[54] A. G. Aberlea, N. P. Hardera, S. Oelting, “Formation of large-grained uniform poly-Si films on glass at low temperature”, Journal of Crystal Growth 226 (2001) 209-214.
[55] D. Della Sala, S. Loreti, L. Fornarini, I. Menicucci, A. Santoni, P. Delli Veneri, Minarinic, C. Privatoc, J. Lancockd, “Laser-assisted chemical vapor deposition of thick poly-Si layers for solar cells”, Thin Solid Films 403 -404 (2002) 302-306.
[56] K. M. Lim, M. Y. Sung, “Low noise digital data driver circuit integrated poly-Si TFT-LCD”, Microelectronics Journal 30 (1999) 905-910.
[57] E. V. Jelenkovic , K. Y. Tonga, W. Y. Cheungb, I. H. Wilsonb, S. P. Wongb, M. C. Poon, “Low temperature doping of poly-SiGe films with boron by co-sputtering”, Thin Solid Films 368 (2000) 55-60.
[58] S. Bindra, S. Haldar, R. S. Gupta, “Modeling of kink effect in polysilicon thin film transistor using charge sheet approach”, Solid-State Electronics (2003) 645-651.
[59] F. Gromball, J. Heemeier, N. Linke, M. Burchert, J. M. uller, “High rate deposition and in situ doping of silicon films for solar cells on glass”, Solar Energy Materials & Solar Cells (2004) 71-82.
[60] J. K. Rath, “Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications”, Solar Energy Materials & Solar Cells (2003) 431-487.
[61] J. K. Park et al., Electrochemical Society Proceedings, Vol.98-22, (1998), pp.84.
[62] K. Naeli, Mat. Res. Soc. Symp. Proc. Vol. 664, (2001), A6.
[63] V. Gueorguiev, Tz Ivanov, S Andreev and L Popova, “Silicon oxide conductivity of hydrogen ion implanted polysilicon thin film transistors”, Tzarigradsko Chaussee blvd. 1784.
[64] A. Nakajima, T. Suzuki, M. Yoshimi, K. Yamamoto, “Enhancement of optical absorption for belowgm thin-film poly-Si solar cell on glass substrate”, Solar Energy Materials and Solar Cells 48 (1997) 287-294.
[65] S. Friligkos, V. Papaioannou, J. Stoemenos, R. Carluccio, S. Cina, G. Fortunato, “Structural characterization of -Si films crystallized by combined furnace and laser annealing”, Journal of Crystal Growth 182 (1997) 341-351.
[66] B. Yeol Ryu, J. Ryu, H. C. Kim and J. Jang, “Very lowtepperature growth of polycrystalline silicon using SiF4/H2”, Solid State Communications, Vol. 101, No. I, pp. 17-20, 1997.
[67] S. Uchikoga, N. Ibaraki, “Low temperature poly-Si TFT-LCD by excimer laser anneal”, Thin Solid Films 383 2001.19-24.
[68] C. H. Kim, S. H. Jung, J. H. Jeon, M. K. Han, “A simple low-temperature laser-doping employing phosphosilicate glass and borosilicate glass films for the source and drain formation in poly-Si thin film transistors”, Thin Solid Films 397 (2001) 4-7.
[69] K. Kitahara, H. Nogi, A. Moritani, “Hydrogenation of laser-crystallized poly-silicon thin films and characterization of defects using a catalytic method”, Thin Solid Films 395 (2001) 92-96.
[70] P. Widenborg, D.H. Neuhaus, P. Campbell, A. B. Sproul, A. G. Aberle, “Back electrode formation for poly-Si thin film solar cells on glass having AIC-grown seeding layer”, Solar Energy Materials & Solar Cells 74 (2002) 305-314.
[71] P. A. T. T. van Veenendaal, T. J. Savenije, J. K. Rath , R.E.I. Schroppa, “Microwave mobility in profiled poly-Si thin films deposited on glass by hot-wire CVD”, Thin Solid Films 403 -404 (2002) 175-178.
[72] C. H. Tseng, C. W. Lin, T. H. Teng, T. K. Chang, H. C. Cheng, A. Chin, “Study on dopant activation of phosphorous implanted polycrystalline silicon thin films by KrF excimer laser annealing”, Solid-State Electronics (2002) 1085-1090.
[73] D. Dosev, B. Inguez, L.F. Marsal, J. Pallares, T. Ytterdal, “Device simulations of nanocrystalline silicon thin-film transistors”, Solid-State Electronics (2003) 1917-1920.
[74] R. Garcia, M. Estrada, A. Cerdeira, “Effects of impurity concentration, hydrogen plasma process and crystallization temperature on poly-crystalline films obtained from PECVD a-Si:Hlayers”, Microelectronics Reliability (2003) 1281-1287.
[75] L. Rezaee, S. Mohajerzadeh, A. Khakifirooz, “Fabrication of poly-Si TFT’s on glass with a novel method of back-reflecting low-temperature UV-assisted nickel-induced crystallization”, Solid-State Electronics (2003) 361-366.
[76] M. Ohring, The Material Science of Thin Film, Academic Press, Inc, 1992.
[77] H. Leplan, J. Y. Robic,Y. Pauleau, B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition”, Thin Solid Film, Vol.290, 1966, PP.34-39.
[78] 林文中,“光學薄膜應力之分析”,國立成功大學機械工程學系,碩士論文,2000。
[79] C. V. Thompson and R. Carel, “Stress and Grain Growth in thin films”, J.Mech.Phys, Solids,Vol.44, No.55, 1996, pp.657-673.
[80] A. T. Krishnan and S. J. Fonash, ”Off-State Stress-Induced Reduction of Off-State Current in Polycrystalline Silicon Thin Film Transistors.”IEEE ,1999.
[81] M. A. Crowder, M. Moriguchi, Y. Mitani, A.T. Voutsas, “Parametric investigation of SLS-processed poly-silicon thin films for TFT applications”, Thin Solid Films 427 (2003) 101-107.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔