跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林岱樺
研究生(外文):LinDai-Hai
論文名稱:乾廢棄生物污泥應用於銅之吸附與脫附之特性研究
論文名稱(外文):The study of dried waste biosolid as biosorbent for copper adsorption and desorption
指導教授:呂明和
指導教授(外文):Min-Her Leu
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
論文頁數:134
中文關鍵詞:銅離子生物吸附粒劑生物吸附生物脫附
外文關鍵詞:desorptionbiosorptionbiosorbentcopper
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究在兼顧吸附處理成效及較低成本費用之原則為首要考量,基於資源永續回收再利用之理念,結合生物污泥之特性及吸附基本理論,嘗試以乾燥後之廢棄生物污泥予以破碎造粒,並配合適當調理水之浸漬條件以恢復吸附活性,製成生物吸附粒劑用以吸附處理低濃度之銅離子廢水,經吸附之銅離子-生物粒劑以脫附劑洗出銅離子,進而評估生物吸附粒劑循環再利用之可行性。
本研究係以批次及連續流之方式進行生物吸附粒劑之吸脫附試驗,污泥之種類分為P-污泥(添加polymer污泥) 與NP-污泥(未添加polymer污泥),其中主要探討控制因素包括:吸附時間、銅離子濃度、調理條件等項。由研究結果顯示,於批次試驗時,經由調理之污泥其吸附效率比未調理污泥佳,而風乾污泥與P-污泥對銅離子之吸附效率皆較烘乾污泥與NP-污泥佳;然而,隨著污泥調理時間與其對銅離子吸附時間之增加,Cu-污泥之銅離子脫附效率卻相對的降低,其可能是因為當調理及吸附時間越久其與重金屬之化學結合也越強,而影響脫附效率。另外,TOC之溶出以烘乾污泥較風乾污泥明顯,P-污泥吸附銅離子時之TOC溶出則稍大於NP-污泥,由此可知,P-污泥(風乾)為較佳之生物吸附粒劑,而污泥於調理過程中其TOC已局部溶出,可再進生物處理,故調理污泥進行吸附銅離子時不致造成TOC與銅離子共存之後續處理問題。另外,隨著再利用次數之增加,其銅離子之吸脫附效率於吸脫附次數第4次之後其效率便呈現下降之趨勢,其主要因銅離子吸附累積之現象而減少其吸脫附效果,因此再利用之次數以少於4次為宜。連續流試驗之結果顯示,當銅離子濃度為50ppm,其吸附時間達16.5小時銅離子濃度升至3mg/L(放流水標準)。總之生物吸附粒劑具有去除廢水中重金屬之特性,配合脫附回收處理,可達資源回收再利用之目的。
Biosorbent produced from dried waste biosolid was applied to adsorb copper ions in wastewater. The main point of using biosorbent is its high adsorption efficiency and low cost as well as the reuse of bio-waste. The dried waste biosolid was smashed to granules, and recuperated properly in water to resume the activity of adsorbent. After the adsorption process, desorption agent was used to extract the copper ions from the biosorbent and the possibility of resue it was assessed.
In the study, adsorption and desorption of biosorbent in both batch and continuous experiments were tested, two kinds of the sludge P-Sludge (polymer added) and NP-Sludge (nonpolymer added) were used. Among them we probe into the factor of controlling, such as adsorption time, copper concentration, recuperating the condition,etc. Shown as the result, the adsorption efficiency of recuperated sludge was better than that of not recuperated. The oven-dried sludge and P-Sludge were more effective in absorbing copper than air-dried and NP-Sludge. However, copper adsorption efficiency increased for increaseed adsorption time and recuperative time, but the efficiency of copper desorption decreased, which may due to the longer reaction time for stronger adsorption. Nevertheless the release of organic compounds (TOC, total organic compounds) from the sludge was studied. The amount of organic compounds leached form oven-dried sludge was higher than that of air-dried sludge. Also, the amount of TOC from P-Sludge was higher than from NP-Sludge. Thus it probably means that P-Sludge (air-dried) is the better biosorbent than NP-sludge. In addition, the adsorption and desorption efficiencies for copper appeared to decrease after 4 times, indicating some copper still accumulated in sludge after extraction, and the reuse of the sludge for copper adsorption should be less than four times. The result also shows that when the copper concentration was 50mg/L for continuous flow process, the adsorption time of sludge for copper lasted up to 16.5 hours and the copper concentration in effluent could still meet EPA requirement of 3mg/L, so it can be applied to real field. In a word, from the point of recycle and reuse, it is definitely worth using the biosorbent to remove copper ions from solution and reuse the desorbed copper.
中文摘要 ………………………………………………………… Ⅰ
英文摘要 …………………………………………………………… Ⅱ
致 謝 ……………………………………………………………. Ⅲ
目 錄 ……………………………………………………………. Ⅳ
表目錄 ……………………………………………………………. Ⅶ
圖目錄 ……………………………………………………………. Ⅷ
一、 前言……………………………………………………… 1
1-1 研究動機及目的………………………………………… 1
1-2 研究內容………………………………………………… 2
二、 文獻回顧………………………………………………… 3
2-1 生物污泥之來源及性質………………………………… 3
2-2 重金屬之來源及處理概況……………………………… 4
2-2-1重金屬之來源……………………………………... 4
2-2-2重金屬廢水之處理概況…………………….. 5
2-3 吸附原理及影響因子…………..……………………….. 6
2-3-1吸附機制………………………............................... 6
2-3-2吸附種類…………………………………………... 7
2-3-3吸附模式…………………………………………... 9
2-3-4影響吸附反應之因子……………………………... 11
2-4 微生物應用於重金屬之吸附及影響…………………… 14
2-4-1生物處理系統之微生物及重金屬之影響……….. 14
2-4-2生物處理系統之乾污泥於重金屬之應用……….. 18
2-4-3生物處理系統之EPS於重金屬之應用………….. 23
2-5 小結……………………………………………………… 26
三、 實驗設備、材料與方法…………………………………. 28
3-1 實驗材料………………………………………………… 29
3-1-1生物污泥…………………………………………... 29
3-1-2實驗材料…………………………………………... 30
3-1-3實驗設備…………………………………………... 31
3-2 實驗流程………………………………………………… 31
3-3 實驗方法………………………………………………… 33
3-3-1樣品備置…………………………………………... 33
3-3-2生物污泥之基本特性分析………………………... 33
3-3-3吸脫附效能之評估………………………………... 37
3-3-4連續流試驗……………………………………….. 38
3-3-5污泥之再利用試驗………………………………... 40
四、 結果與討論……………………………………………… 41
4-1 污泥基本特性分析……………………………………… 41
4-1-1 pH值、含水率與密度……………………………. 41
4-1-2重金屬總量分析…………………………………... 42
4-1-3污泥之表面結構FTIR之分析……………………. 42
4-1-4表面積之測定……………………………………... 44
4-1-5表面結構之顯微鏡觀察…………………………... 45
4-1-4小結………………………………………………... 47
4-2 批次試驗………………………………………………… 48
4-2-1未調理污泥之批次試驗…………………………... 48
4-2-2調理時間之吸附效能評估……………………….. 67
4-2-3污泥分離EPS之吸附現象與特性分析………….. 74
4-2-4 pH及TOC之分析……………………………….. 81
4-2-5小結……………………………………………….. 93
4-3 連續流試驗……………………………………………... 94
4-3-1調理污泥對Cu吸附效率之影響………………… 94
4-3-2調理污泥對Cu脫附效率之影響………………… 98
4-3-3小結……………………………………………….. 101
4-4 污泥再利用……………………………………………... 102
4-4-1吸附現象之探討………………………………….. 102
4-4-2表面結構之FTIR及SEM之分析………………. 103
4-4-3污泥再利用之情形……………………………….. 111
4-4-4小結……………………………………………….. 113
五、 結論與建議……………………………………… 114
5-1結論…………………………………………………. 114
5-2建議…………………………………………………. 116
參考文獻 …………………………………………………………... 117
附錄一 …………………………………………………………... 121
附錄二 …………………………………………………………... 128
表2-1 典型生物污泥物化特性……………………................... 4
表2-2 銅之來源及工業用途…………………………………... 5
表2-3 物理吸附與化學吸附之比較表………………………... 9
表2-4 污泥之成分分析表……………………………………... 15
表2-5 污泥於吸附銅前與後之FTIR分析圖譜分析表……… 22
表2-6 各種吸附劑之最大吸附特性與Qm值分析表…………. 25
表2-7 EPS之FTIR分析圖譜分析表…………………………. 27
表4-1 污泥之pH值、含水率及密度分析……………………. 41
表4-2 P-污泥與NP-污泥重金屬含量分析表………………… 42
表4-3 Freundlich與Langmuir之常數比較表………………… 61
表4-4 污泥分離EPS之重量損失表………………………….. 74
表4-5 污泥分離EPS之單位負荷之比較表………………….. 75
圖2-1 氨基酸於酸鹼之不同情行下之官能機構造圖………... 15
圖2-2 污泥於吸附銅前與後之FTIR分析圖譜………………. 22
圖2-3 污泥中EPS之顯微鏡掃描圖(1000x)………………….. 23
圖2-4 EPS之FTIR分析圖譜…………………………………. 26
圖3-1 實驗設計階段圖………………………………………... 29
圖3-2 污水廠之廢水處理流程圖……………………………... 30
圖3-3 實驗程序流程圖………………………………………... 32
圖3-4 前處理流程圖…………………………………………... 33
圖3-5 污泥之基本理化分析流程圖…………………………... 34
圖4-1 P-污泥之表面結構FTIR分析…………………………. 43
圖4-2 NP-污泥之表面結構FTIR分析……………………….. 44
圖4-3 調理時間之表面積分佈情形…………………………... 45
圖4-4 表面結構之顯微鏡觀察影像觀察圖(a)0hr, (b)4hr, (c)8hr,(d)16hr…… 46
圖4-5 吸附時間對吸附效率之影響…………………………... 50
圖4-6 污泥量對銅離子之污泥單位負荷量之影響…………... 51
圖4-7 重金屬濃度對吸附效率之影響………………………... 53
圖4-8 污泥粒徑對銅離子吸附效率之影響…………………... 54
圖4-9 脱附時間對銅離子脫附效率之影響…………………... 55
圖4-10 脱附時間對TOC之溶出情形之影響…………………. 57
圖4-11 吸脫附效率之變化趨勢圖……………………………... 60
圖4-12 等溫吸附曲線圖………………………………………... 61
圖4-13 P-污泥吸附銅離子前後之FTIR分析圖譜……………. 63
圖4-14 NP-污泥吸附銅離子前後之FTIR分析圖譜………….. 63
圖4-15 P-污泥之SEM微化學分析圖(1500X),(a)P-污泥(烘乾), (b)P-污泥-Cu(烘乾), (c)P-污泥(風乾), (d)P-污泥-Cu(風乾)……………… 65
圖4-16 NP-污泥之SEM微化學分析圖(1500X),(a)NP-污泥(烘乾), (b)NP-污泥-Cu(烘乾), (c)NP-污泥(風乾), (d)NP-污泥-Cu(風乾)…………… 66
圖4-17 調理時間之吸脫附效率變化趨勢圖…………………... 69
圖4-18 調理時間對吸附效率之變化趨勢……………………... 70
圖4-19 調理污泥吸附單位負荷之分析圖……………………... 72
圖4-20 調理時間對脫附效率之變化趨勢…………………….. 73
圖4-21 分離後殘餘污泥之負荷量分析圖……………………... 77
圖4-22 P-污泥於不同狀態下表面官能基之FTIR分析圖譜…. 78
圖4-23 NP-污泥於不同狀態下表面官能基之FTIR分析圖譜.. 79
圖4-24 P-污泥之EPS吸附銅離子後之FTIR分析圖譜……… 80
圖4-25 NP-污泥之EPS吸附銅離子後之FTIR分析圖譜……. 81
圖4-26 銅離子吸附時其TOC溶出濃度之變化趨勢圖………. 83
圖4-27 銅離子脫附時其 TOC溶出濃度之變化趨勢圖……… 84
圖4-28 調理時間之調理水pH分佈情形……………………… 85
圖4-29 調理時間之調理水TOC溶出情形……………………. 87
圖4-30 調理時間對吸附銅離子時pH之變化趨勢圖………… 88
圖4-31 調理時間對吸附銅離子時TOC溶出分佈情形………. 90
圖4-32 調理時間對脫附銅離子時TOC溶出分佈情形……….. 92
圖4-33 調理污泥與銅離子濃度100ppm之吸附曲線圖……… 95
圖4-34 調理污泥與銅離子濃度200ppm之吸附曲線圖……… 96
圖4-35 不同濃度對剩餘銅離子濃度之影響…………………... 97
圖4-36 滲流量對吸附TOC之影響…………………………… 98
圖4-37 脫附方式對脫附效率之影響…………………………... 99
圖4-38 脫附方式對脫附TOC之影響…………………………. 100
圖4-39 污泥再利用之分佈情形………………………………... 103
圖4-40 利用HNO3脫附劑之FTIR分析圖譜…………………. 104
圖4-41 利用HNO3脫附劑之SEM分析圖譜(6000X)…………. 105
圖4-42 利用HCL脫附劑之FTIR分析圖譜…………………… 106
圖4-43 利用HCL脫附劑之SEM分析圖譜(6000X)…………. 106
圖4-44 利用H2SO4脫附劑之FTIR分析圖譜………………….. 107
圖4-45 利用H2SO4脫附劑之SEM分析圖譜(6000X)………… 108
圖4-46 利用CH3COOH脫附劑之FTIR分析圖譜…………… 109
圖4-47 利用CH3COOH脫附劑之SEM分析圖譜(6000X)…… 109
圖4-48 利用Citrate-Na脫附劑之FTIR分析圖譜…………….. 110
圖4-49 利用Citrate-Na脫附劑之SEM分析圖譜(6000X)……. 111
圖4-50 污泥再利用之吸附脫情形……………………………... 112
[1]邱創汎、鄒文源,批式活性污泥的數學模式及設計原則研究,第14屆廢水處理技術研討會論文集,1989。
[2]張祖恩、呂明和,生物污泥之土地施用及處置技術,工業污染防治第64期,1997。
[3]黃龍泰,以稻殼和花生殼製備高表面積之活性碳與其應用,國立台灣科技大學化學工程系,碩士論文,2001。
[4]林健榮,燃煤飛灰去除水中污染物行為之研究,國立成功大學環境工程研究所,博士論文,2001。
[5]莊啟珠,利用真菌菌絲生質體去除水中重金屬最佳處理方法之探討,國立成功大學環境工程研究所,碩士論文,1994。
[6]薛良坪,重金屬在活性污泥中累積之研究,國立成功大學土木工程學系,碩士論文,1976。
[7]陳彥瑜,銅鋅鎳三種重金屬對活性污泥處理廢水之影響,國立台灣大學環境工程研究所,碩士論文,1979。
[8]Dilek F. B. and Yetis U., Effects of heavy metals on activated sludge process, Water Science and Technology, Vol. 26, No. 3-4, pp. 801-813, 1992.
[9]Guilbaud G., Sophic C. and Francois B., Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel, Chemosphere, Vol. 59, pp.629-638, 2005.
[10]程惠生、吳明洋、盧啟文,以固定生物膜處理重金屬廢水-以旋轉生物板為例,第十九屆廢水處理技術研討會論文集,1994。
[11]周明顯、魏婉汝,含重金屬低濃度有機廢水之厭氣處理,第二十屆廢水處理技術研討會論文集 ,1993。
[12]Alkan U., Siddik C., Yucel T. and Colby C., Influence of an aerobic selector on copper and hexavalent chromium biosorption by activated sludge , Journal of Chemical Technology and Biotechnology, Vol. 77, No. 10, p 1141-1148, 2002.
[13]Kodukula P. S., James W. P. and Rao Y. S., Sorption of cadmium and nickel in activated sludge, Water Quality Research Journal of Canada, Vol. 30, No. 2, pp. 277-297, 1995.
[14]Leighton I. R. and Forster C. F., Adsorption of heavy metals in an acidogenic thermophilic anaerobic reactor, Water Research, Vol. 31, No. 12, pp. 2969-2972, 1997.
[15]Lombrana J. I., Varona F. and Mijangos F., Study of nickel sorption onto biological sludges. Possibilities for heavy metals removal treatments, Water, Air and Soil Pollution, Vol. 82, No. 3-4, pp. 645-658, 1995.
[16]Muh K. M., Sheng S. H. and Ying C. F., Removal of heavy metals from waste water by fungi, Hazardous and Industrial Wastes Proceedings of the Mid-Atlantic Industrial Waste Conference, pp. 146-155, 1993.
[17]Liu Y., Lam M.C and Fang H. P., Adsorption of heavy by EPS of activated sludge, Water Science and Technology, Vol. 43, No. 6, pp. 59-66, 2001.
[18]Paul J. C., Desmond L., Wang L., Shunnian W. and Beiping Z., Dried waste activated sludge as biosorbents for metal removal: adsorptive characterization and prevention of organic leaching, Journal of Chemical Technology and Biotechnology, Vol. 77, pp. 657-662, 2002.
[19]Dong W. K., Daniel C. K., Wang J. and Huang C. P., Heavy metal removal by activated sludge-influence of Nocardia amarae, Chemosphere , Vol. 46, pp.137-142, 2002.
[20] Bakkaloglu I. , Butter T. J., Evison L. M., Holland F. S. and Hancock I. C., Screening of various types recovery of heavy metals (Zn, Cu, Ni)by biosorption, sedimentation and desorption, Water Science and Technology , Vol. 38, No. 6, pp.269-277, 1998.
[21]Atkinson B.W., Bux F. and Kasan H.C., Waste activated sludge remediation of metal-plating effluents, Water Science and Technology, Vol.24, No.4, pp. 355-359, 1998.
[22]Mishra S.P. and Chaudhury G. R., Removal of zinc from wastewater using waste biomass, International Journal of Environmental Studies A & B, Vol. 50, No.2, pp. 117-1241, 1996.
[23]徐瑞堂(1993),以微生物去除水中重金屬,環境工程會刊,第四卷,第一期。
[24]Arica M. Y., Cigdem A., Aysum E., Gulay B. and Omer G., Ca-alginate as support for Pb(II) and Zn(II)biosorption wuth immobilized phanerochate chrysosporium, Carbohydrate Polymers, Vol.52, pp.167-174, 2003.
[25]Vivek U., Yann C. B., Tabak H. H. and Bishop D. F., Treatment of acid mine drainage: I. Equilibrium biosorption of zinc and copper on non-viable activated sludge, International Biodeterioration & Biodegradation, Vol. 46, pp.19-28, 2000.
[26]Jung H. S. and Dong S. K., Comparison of different sorbents (inorganic and biological) for the removal of Pb2+ from aqueous solutions, Journal of Chemical Technology and Biotechnology, Vol.75, pp.279-284, 2000.
[27]Aksu Z. and Julide Y., A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents, Waste Management, Vol. 21, pp.695-720, 2001.
[28]Aksu Z. and Gonen F., Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochemistry, Vol. 39, pp.599–613, 2004.
[29]Aksu Z., Acikel U., Kabasakal E. and Tezer S., Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel (II) onto dried activated sludge, Water Research, Vol. 36, pp.3063–3073, 2002.
[30]Aksu Z., Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling, Biochemical Engineering Journal, Vol. 7, pp. 79–84, 2001.
[31]Yesim S., Berya T. and Tulin K., Biosorption of Pb(II) and Cu(II) by activated sludge in batch and continuous-flow stirred reactors, Bioresource Technology, Vol. 87, pp.27-33, 2003.
[32]阮文昌,薄膜生物反應槽積垢特性之研究,朝陽科技大學環境工程與管理研究所,碩士論文,2002。
[33]Guilbaud G., Tixier N., Bouju A. and Baudu M., Relation between extracellular polymers composition and its ability to complex Cd, Cu and Pb, Chemosphere, Vol. 52, pp.1701-1710, 2003.
[34]Smith P. G. and Coackley P., A method for determining specific surface area of activated sludge by dye adsorption, Water Research, Vol. 17, No. 5, pp.595-598, 1983.
[35]Weng C. H., Chang E.E. and Chiang P. C., Characteristics of new coccine dye adsorption onto digested sludge particulates, Water Science and Technology, Vol. 44, No. 10, pp.279-284, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top