(44.192.10.166) 您好!臺灣時間:2021/03/06 03:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王正欽
研究生(外文):Cheng-Chin Wang
論文名稱:利用電解液添加劑改善釕氧化物電極超高電容器儲電特性
論文名稱(外文):Application of electrolyte additives to improve the performance of ruthenium oxide electrode for supercapacitors
指導教授:卓錦江卓錦江引用關係楊文都楊文都引用關係
指導教授(外文):Jiin-Jiang JowWein-Duo Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:106
中文關鍵詞:電容器釕氧化物電極電解液添加劑阻抗分析漏電流
外文關鍵詞:CapacitorRuthenium oxides electrodeElectrolyte additivesImpedanceLeakage current
相關次數:
  • 被引用被引用:1
  • 點閱點閱:786
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討各種電解液添加劑對提昇釕氧化物電極儲電性能的影響,包括電極阻抗、電極電容量、氣體生成過電位、漏電流、電極平衡電位和循環充放電量等之變化,並深入評估各種電解液添加劑之效果,求得實用的電解液和添加劑的配方,克服電容器的漏電流、正負二極儲電量不對稱及過充或過放反應等問題。
實驗結果顯示,釕氧化物電極在4.5M硫酸電解液中,具有較佳的電容值與最低的阻抗值。由CV掃描測試,求得在4.5M硫酸電解液中,添加硫酸鈷與硫酸錳添加劑對電容量的變化,結果顯示,其電容量有提升的趨勢,當添加濃度達0.010M時,電容分別增加0.02及0.05 C/cm2。阻抗分析結果顯示,添加低濃度之硫酸鈷與硫酸錳添加劑,具有降低阻抗的功效,當添加濃度為0.01M時,阻抗分別降低0.03及0.05 ohm/cm2。利用線性掃描法,分析在4.5M硫酸電解液中,添加硫酸鈷與硫酸錳添加劑之陽極與陰極極化行為,結果顯示,硫酸鈷與硫酸錳能有效降低生成氧氣的活性,增加氧氣生成的過電位,由塔佛線,求得陽極產生氧氣的轉移係數α,會隨著硫酸鈷與硫酸錳濃度的增加而下降,交換電流I0值則隨著濃度的上升而增加。
由CV掃描測試,求得在4.5M硫酸電解液中,添加檸檬酸與葡萄糖添加劑對電容量的影響。結果顯示,添加檸檬酸與葡萄糖會影響電極的充放,在較高的掃描速率下,會造成電容下降。從阻抗分析結果得知,在4.5M硫酸電解液中,添加低濃度之檸檬酸與葡萄糖添加能降低阻抗值。利用線性掃描法,分析在4.5M硫酸電解液中,添加檸檬酸與葡萄糖添加劑之陽極與陰極極化行為,從結果得知,添加檸檬酸與葡萄糖,能有效抑制氧氣/氫氣的生成,增加氧氣/氫氣生成的過電,由塔佛線,可求得在4.5M的硫酸電解液中,添加檸檬酸與葡萄糖添加劑對電極產生氣體之動力學參數的影響,結果顯示,陽極產生氧氣與陰極產生氫氣的轉移係數α,皆隨著添加濃度的增加而下降,交換電流I0值不論在陽極或陰極皆隨著濃度的上升而增加。
從元件的漏電流測試結果得知,在4.5M的硫酸電解液中,添加硫酸鈷、硫酸錳、葡萄糖與檸檬酸添加劑,均能有效降低氧氣產生的漏電流,其中硫酸錳對氧氣漏電流的抑制最為明顯。由元件漏電流測試亦可得知,鐵離子會增加元件的漏電流,從實驗結果也驗證了,在 4.5M的硫酸電解液中,添加12-Crown-4與15-Crown-5能有安定鐵離子的功用,降低系統漏電流。而 EDTA在強酸中非常安定,不易解離,因此沒辦法與鐵離子形成穩定的錯化合物,來達到安定鐵離子的功效。
Abstracts
Inorganic and organic electrolyte additives, including CoSO4 , MnSO4, citric acid, dextrose, 12-crown-4 and 15-crown-5 for improving the performance of the ruthenium oxide electrode supercapacitors have been studied in this work. The effects of these electrolyte additives on anodic and cathodic polarization curves, cyclic voltammetric behavior and impedance of the individual electrodes in the electrolyte are investigated systematically.
The result shows that the ruthenium oxide electrode has the lowest impedance and high capacity in 4.5 M H2SO4 electrolyte solution. Analysis of the polarization behavior shows that the additives in the electrolyte decrease the transfer coefficient α and depress the evolution of oxygen on the ruthenium electrodes which increase the potential window for the operation and tolerance to overcharge of the devices. The CV behavior analysis shows the CoSO4 and MnSO4 additives in the electrolyte increase the capacity of the ruthenium oxide electrodes of ca 0.02~0.05 Coul/cm2, while citric acid and dextrose have little effects. In addition, the impedance measurement shows the additives in the electrolyte decrease the impedance by 0.03~0.05 ohm/cm2 as a result of depolarization of the ruthenium oxide electrode.
A leakage current Il measurement of the ruthenium oxide electrode capacitors also reveals that CoSO4 , MnSO4, citric acid, dextrose decrease Il contributed from O2 successfully at charge potential larger than 1.0 V, while 12-crown-4 and 15-crown-5 decrease Il resulted from ferrous/ferric impurity effectively between 0.4~0.8V.
頁次
中文摘要 .................................................. i
英文摘要 .................................................. iii
誌謝 .................................................. iv
表目錄 .................................................. viii
圖目錄 .................................................. ix
第一章 緒論............................................... 1
1.1 電化學電器.......................................... 1
1.2 釕氧化物超高電容器特性原理........................... 2
1.2.1釕氧化物超高電容器之儲電特性........................ 4
1.2.2釕氧化物電極的漏電流與自放電反應..................... 7
1.2.3 釕氧化物電極的阻抗特性............................. 8
1.3 交流阻抗分析原理........................................ 12
1.3.1.電化學系統等效電路及其阻抗分析...................... 12
1.3.2電感阻抗現象....................................... 14
1.3.3擴散阻抗........................................... 15
1.4 研究動機................................................ 19
第二章 實驗方法與步驟........................................... 21
2.1 使用儀器與藥品........................................... 21
2.2 電極與電解液的前製工作.................................... 22
2.3 電化學測試.............................................. 23
2.2.1循環伏安法測試...................................... 23
2.2.2線性掃瞄法.......................................... 23
2.2.3阻抗分析........................................... 23
2.4 電極表面分析............................................. 24
2.5 釕氧化物超高電容器的封裝.................................. 26
2.3.1封裝示意圖.......................................... 26
第三章 結果與討論............................................... 27
3.1 釕氧化物電極之表面分析與結構鑑定........................... 27
3.2 電解液影響釕氧化物電極的特性分析........................... 31
3.2.1硫酸電解液濃度對釕氧化物電極儲電特性之探討............. 31
3.2.2硫酸電解液濃度對釕氧化物電極生成氣體之影響............. 31
3.2.3硫酸電解液濃度對釕氧化物電極阻抗的特性探討............. 31
3.3 電解液添加劑對釕氧化物電極儲電特性的影響.................... 38
3.3.1CoSO4及MnSO4添加劑對釕氧化物電極儲電量的影響.......... 38
3.3.2 CoSO4及MnSO4添加劑對抑制釕氧化物電極生成氣體之影響.... 43
3.3.3 CoSO4及MnSO4添加劑對生成氣體之反應動力學探討......... 49
3.3.4 CoSO4及MnSO4添加劑對釕氧化物電極阻抗的特性探討....... 51
3.3.5 Citric acid及Dextrose添加劑對釕氧化物電極儲電量的特性分
析............................................... 60
3.3.6 Citric acid及Dextrose添加劑對釕氧化物電極氣體過電位的抑制效
應............................................... 65
3.3.7 Citric acid及Dextrose添加劑對生成氣體之反應動力學探討 71
3.3.8 Citric acid及Dextrose添加劑對釕氧化物電極阻抗的特性探
討............................................... 72
3.4 電解液添加劑對釕氧化物電極產生氧氣漏電流之特性分析........... 81
3.5 系統中鐵離子雜質對漏電流的影響............................. 89
第四章 總結................................................... 100
參考文獻 ....................................................... 102
附錄 ....................................................... 107
1.R. Kotz, M. Carlen, “Principles and Applications of Electrochemical Capacitors”, Electrochimica Acta 45,pp. 2483-2498, (2000).
2.R. C. Bhardwaj, John Than, “Lead Acid Battery with Thin Metal Film Technology for High Power Applications”, J. of Power Sources91, pp. 51-61, (2000).
3.B. E. Conway, Electrochemical Supercapacitors- Scientific Fundanmentals and Technological Applications, Kluwer-Plenum, New York, (1999).
4.C. C. Hu, K. H. Chang, “Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors: Effects of Codepositing Iridium Oxide, Electrochimica Acta 45, pp. 2685-2696, (2000).
5.C. C. Hu, Y. H. Huang, “Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitor”, J. of The Electrochemical Society 146, pp. 2465-2471, (1999).
6.M. Ramani, Bala S. Haran, Ralph E. White, Branko N. Popov, Ljubomir Arsov,“Studies on Activated Carbon Capacitor Material Loaded with Different Amounts of Ruthenium Oxide”, J. of Power Source 93, pp.209-214, (2001).
7.J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous Ruthenium Oxides as an Electrode Material for Electrochemical Capacitors”, J. of The Electrochemical Society 142, pp. 2699-2703, (1995).
8.M. Vukovic, D. C. W, “Electrochemical Quartz Crystal Microbalance Study of Electrodeposited Ruthenium’, J. of Electroanalytical Chemistry 474, pp. 167-173, (1999).
9.C. C. Hu, C. C. Wang “Improving the Utilization of Ruthenium Oxide with Thick Carbon-ruthenium Oxide Composites by Annealing and Anodizing for Electrochemical Capacitors,”, Electrochemistry Communications 146, pp.554-559, (2002).
10.N. L. Wu, S. L. Kuo and M. H. Lee, “ Preparation and Optimization of RuO2 – Impregnated SnO2 Xerogel Supercapacitor,” Journal of Power Sources 104, pp. 62-65, (2002).
11.E. E. Kalu, T. T. Nwoga, V. Srinivasan, J. W. Weidner, “Cyclic Voltammetric Studies of The Effects of Time and Temperature on The Capacitance of Electrochemically Deposited Nickel Hydroxide”, J. of Power Sources 92,pp.163-167(2001).12[15] U.S. Pat. 5,079,674; U.S. Pat.6,252,762; U.S. Pat.6,222,723; U.S. Pat.6,168,694.
12.S. F. Chin, S. C. Pang, M. A. Anderson, “Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors”, Journal of The Electrochemical Society,149(4), pp. A379-384,(2002).
13.P. M. Wilde, T. J. Guther, R. Oesten, J. Garche, “Strontium Ruthenate Perovskite as The Active Material for Supercapacitors”, J. of Electroanalytical Chemistry 461, pp.154-160, (1999).
14.M. Mastragostino, C. Arbizzani, R. Paraventi, A. Zanelli, “Polymer Selection and Cell Design for Electric-Vehicle Supercapacitor”, Journal of The Electrochemical Society, 147(2), pp. 407-412, (2000).
15.曾文男, 蔡麗瑞, 導電高分子於儲能高電容器上之應用, 工業材料雜誌,176, 第145-148 頁, (2001)。
16.T. Y. Chang, X. Wang, D. A. Evans, S. L. Robinson, J. P. Zheng, “Tantalum Oxide-Ruthenium Oxide Hybrid Capacitors”, Journal of Power Sources , 110, pp.138-143, (2002).
17.A. Burke, “Ultracapacitors: Why, How, and Where is The Technology”, J. of Power Sources, 91, pp. 37-50, (2000).
18.T. C. Liu, W. G. Pell, B. E. Conway, “Self-Discharge and Potential Recovery Phenomena at Thermally and Electrochemically Prepared RuO2 Supercapacitor Electrodes”, Electrochimica Acta 42, pp.3541-3552, (1997).
19.M. Pourbaxi, Atlas of Electrochemical Equilibria in Aqueous Solutions, Print in the USA by the National Association of Corrosion of Corrosion Engineers, Houston, (1974).
20.L. D. Burke, O. J. Murphy, J. F. O’Neill, Srinivasan Venkatesan,“The Oxygen Electrode---Oxygen Evolution at Ruthenium Dioxide Anodes”, Royal Society of Chemistry Jr.:Faraday Trans.1: A Jr. of Physcal.
21.C. P. D. Pauli, S. Trasatti, “Composite Materials for Electrocatalysis of O2 Evolution: IrO2+SnO2 in Acid Solution”, Journal of Electroanalytical Chemistry, 538-539, pp.145-151,(2002).
22.“Basics on AC Impedance Measurements” Application Note AC-1 Available upon request from EG&G Princeton Applied Research Electrochemical Instruments Division.
23.鄧熙聖、粘駿楠,2002,碳電極之氧官能基對電化學電容器之影響,國立成功大學化學工程系碩士論文。
24.W. C. Chen, T. C. Wen, H. Teng, “Polyaniline-Deposited Porous Carbon Electrode for Supercapacitor”, Electrochimica Acta, vol. 48, pp.641-649, (2003).
25.W. C. Chen, T. C. Wen, A. Gopalan, “Negative Capacitance for Polyaniline:an Analysis via Electrochemical Impedance Spectroscpy”, Synthetic Metals, vol. 128, pp.179-189, (2002 ).
26.“Basics on AC Impedance Measurements” Application Note AC-2 Available upon request from EG&G Princeton Applied Research Electrochemical Instruments Division.
27.V. Horvat-Radošević, K. Kvastek, M. Vuković, D. Marijan, “Impedance of Ruthenium Electrodes in Sulphuric Acid Solution”, Journal of Electroanalytical Chemistry, 463, p29-44, (1999).
28.J. R. Macdonald, 1987, Impedance Sepectroscopy: Emphasizing Solid Materials and Systems, John Wiley & Sons, New York.
29.W. H. Zhu, J. J. Ke, H. M. Yu, D. J. Zhang, “A Study of the Electrochemistry of Nickel Hydroxide Electrodes with Various Additives”, J. of Power Sources, 56, pp. 75-79, (1995).
30.J. J. Jow, T. C. Chou, “Product Distributions and Kinetics of Cathodic Reduction of Vanillin in Aqueous Solution”, Electrochimica Acta 32, pp.311-317, (1987).
31.G. K. Gomma, “Corrosion Inhibitor of Steel by Benzotriazolre in Sulfuric Acid”, Material Chemistry and Physics, 55, pp. 235-240, (1998)
32.L. Torchuex, C. Rouvet, J. P. Vaurijoux, “Effect of a Special Additive on The Performance of Standby Valve-Regulated lead Acid Batteries”, J. of Power Sources, 78, pp. 147-155, (1999).
33.B. B. Damaskin, O. A. Petril, V. V. Batrakov, Adsorption of Organic Compounds on Electrodes, Plenum Press, New York, (1979).
34.Arup BhattacharyaIndra, Narayan Basumallick, “Effect of Mixed Additives on Lead-acid Battery Electrolyte”, J. of Power Sources, 113 pp. 382-387, (2003).
35.G. L. Wei, J. R. Wang, “Electrochemical Behavior of Lead Electrode in Sulfuric Acid Solution Containing Citric Acid”, J. of Power Sources, 52, 25-29, (1994).
36.X. Zhu, H. Yang, X. Ai, “Possible Use of Ferrocyanide as a Redox Additive for Prevention of Electrolyte Decomposition in Overcharged Nickel Batteries”, Electrochimica Acta, 48, pp.4033-4037, (2003).
37.M. L. Tsai, Y. F. Lu, J. S. Do, “High-performance Electrolyte in the Presence of Dextrose and its Derivatives for Aluminum Electrolytic Capacitors”, J. of Power Sources, 112, pp.643-648, (2002).
38.H. Dietz, G. Hoogestraat, S. Laibach, D. von Borstel, K. Weisener, “Influence of Substituted Benzaldehydes and their Derivatives as Inhibitors for Hydrogen Evolution in Lead/acid Batteries”, J. of Power Sources, 53, pp.359-365, (1995).
39.J. Ribeiro and A. R. D. Andrade, “Characterization of RuO2-Ta2O5 Coated Titanium Electrode Microstructure, Morphology, and Electrochemical Investigation”, Journal of The Electrochemical Society, 151, pp.D106-D112, (2004).
40.Y. Takasu, Y. Murakami, “Design of oxide electrodes with large surface area”, Electrochimica Acta, 45, pp.4135–4141, (2000).
41.W. A. Koehler, 1994, Electrochemistry, John Wiley & Sons, New York.
42.Z. Rogulski, H. Siwek, I. Paleska, A. Czerwinski, “Electrochemical Behavior of Manganese Dioxide on a Gold Electrode”, Journal of Electroanalytical Chemistry, 543, pp. 175-185, (2003).
43.J. Ph. Petitpierre, Ch. Comninellis, E. Plattner, Electrochim. Acta, 35, pp. 281, (1994).
44.Atlas of Electrochemical Equilibria in Aqueous Solutions.
45.Xianyou Wang, Hean Lou, Hongping Yang, P. J. Sebastian, S. A. Gamboa, “Oxygen Catalytic Evolution Reaction on Nickel Hydroxide Electrode Modified by Electroless Cobalt Coating”, International of Hydrogen Energy, 29, pp. 967-972, (2004).
46.S. Nijjer, J. Thonstad, G. M. Haarberg, “Oxidation of Manganese (Ⅱ) and Reduction of Manganese Dioxide in Sulphuric Acid”, Electrochimica Acta, 46, pp. 395-399, (2000).
47.C. ReRolle and R. Wiart, “Kinetics of Oxygen Evolution on Pb and Pb-Ag Anodes during Zinc Electrowinning”, Electrochimica Acta, 41, pp. 1063-1069, (1995).
48.M. M. E. Duarte, A. S. Pilla, C. E. Mayer, “Electrooxidation of Mn(Ⅱ) to MnO2 on Graphite Fiber Electrodes”, Journal of Applied Electrochemistry, 33, pp. 387-392, (2003).
49.S. Nijjer, J. Thonstad, G. M. Haarberg, “Cyclic and Linear Voltammetry on Ti/IrO2-Ta2O5-MnOx Electrodes in Sulfuric Acid Coataining Mn2+ ion”, Electrochimica Acta, 46, pp. 3503-3508, (2001).
50.A. J. Bard and L. R. Faulkner, Electrochemistry methods fundamentals and applications, New York.
51.C. P. De Pauli, S. Trasatti, “Compositematerials for Electrocatalysis of O2 Evolution: IrO2+SnO2 in Acid Solution”, Journal of electroanalytical Chemistry, 538-539, pp. 145-151, (2002).
52.Yunshi Zhang, Xiaoyan Gao, Huatang Yuan, Wenhu Zhang, Zuoxiang Zhou, “Oxygen Evolution Reaction on Ni Hydroxide Film Electrode Coataining Various Content of Co”, International Journal of Hydrogen Energy, 24, pp. 529-536, (1999).
53.L. M. Da Silva, J. F. C. Boodts, L. A. De Faria, “Oxygen Evolution at RuO2(x)+Co3O4(1-x) Electrodes form Acid Solution”, Electrochimica Acta, 46, pp.1369-1375, (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔