(3.239.33.139) 您好!臺灣時間:2021/03/08 18:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃昭謙
研究生(外文):Chao-Chien Huang
論文名稱:鄰甲酚醛環氧樹脂之有機-無機奈米複合材料之研究
論文名稱(外文):Studies on the Organic-Inorganic Hybrid Nanocomposites of Cresol Novolac Epoxy
指導教授:林榮顯李安成李安成引用關係
指導教授(外文):Rong-Hsien LinAn-Cheng Lee
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:97
中文關鍵詞:鄰甲酚醛環氧樹脂溶膠-凝膠法插層嵌入法奈米複合材料
外文關鍵詞:Cresol Novolac Epoxysol-gel methodintercalation methodnanocomposites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1265
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本研究分別利用溶膠-凝膠(sol-gel)法及插層嵌入(intercalation)法成功的製備出鄰甲酚醛環氧樹脂/二氧化矽之有機/無機奈米複合材料。依製備方法之不同,將系統細分為:溶膠-凝膠法製備鄰甲酚醛環氧樹脂/SiO2奈米複合材料與插層嵌入法製備鄰甲酚醛環氧樹脂/clay奈米複合材料。
在以溶膠-凝膠法製備奈米複合材料的系統中,使用MTOS(methyl -trimethoxysilane)及含環氧基之矽氧烷3-glycidoxypropyltrimethoxysilane (GPOS)當作形成SiO2之前驅體(precursor)。而GPOS不只當作形成SiO2之前驅體亦可作為系統之偶合劑,進而製備出一系列鄰甲酚醛環氧樹脂/SiO2複合材料。經由掃描式電子顯微鏡 (SEM)發現鄰甲酚醛環氧樹脂/SiO2複合材料中的SiO2含量在3 wt%以下時,其粒徑均保持在100 nm以下,且藉由偶合劑的加入可有效降低SiO2的粒徑。在玻璃轉移溫度及介電常數方面,鄰甲酚醛環氧樹脂/SiO2複合材料均較純鄰甲酚醛環氧樹脂佳。
在以插層嵌入法製備奈米複合材料的系統中,係採用經由四級銨鹽改質劑(cetylpyridinium chloride (CPC))有機化改質過的層狀黏土 (clay)作為無機填充相,並利用熔融混摻法合成一系列之鄰甲酚醛環氧樹脂/clay複合材料。且利用控制混成材料的熔融黏度,而能在相同黏土含量下創造出不同結構形態 (脫層型(exfoliated )或插層型(intercalated) )之奈米複合材料。此外,在此系統中也使用不同的改質劑,進而在高clay含量下創造脫層結構及在低clay含量下創造插層結構。
The organic-inorganic hybrid nanocomposites of Cresol Novolac Epoxy/silica were successfully prepared by two approaches in this study. One approach was the sol-gel process with Cresol Novolac Epoxy (Part I). Another was the melting intercalation process (Part II).
In Part I, the silica were prepared by the hydrolysis and condensation of methyltrimethoxysilane(MTOS) and 3-Glycidoxypropyltrimethoxysilane(GPOS) as precursors. Meanwhile, GPOS were also used as coupling agents in systems. The results show that when silica content was lower than 3 wt% in the hybrid, the particles sizes of silica was lower than 100 nm. Nevertheless, the particles sizes of silica can be controlled by adding coupling agent in system. The glass transition temperature and dielectric properties of Cresol Novolac Epoxy were obviously improved with silica embedded.
In Part II, montmorillonite clay modified with the cetylpyridinium chloride(CPC) was used to prepare the Cresol Novolac Epoxy/clay hybrid nanocomposites. The types of morphology (exfoliated or intercalated structure) in the hybrid nanocomposites were successfully controlled by melting the epoxy resin to vary the viscosity for shearing the clay into the epoxy resin. In this study, we are also successfully to create the exfoliated structure at the high clay loading and the intercalated structure at the low clay loading by using the different surfactants.
總目錄


中文摘要………………………………………………………………..…...i
Abstract………………………………………………………………..…....ii
誌謝…………………………………………………………………….……iii
總目錄………………………………………………………………….…….iv
流程目錄(scheme)…………………………………………………………...vi
表目錄………………………………………………………………………..vii
圖目錄………………………………………………………………………..viii


第一章 緒論………………………………………………………………..1

第二章 基本原理及文獻回顧…………………………………………......3

2.1溶膠-凝膠(sol-gel)法……………………………………………………………3
2.1.1 溶膠-凝膠(sol-gel)法製備奈米複合材料之基本原理……………….…...3
2.1.2 溶膠-凝膠(sol-gel)法製備奈米複合材料之文獻回顧……………………4
2.2 插層嵌入法(intercalation)………………………………………………….…..8
2.2.1插層嵌入(intercalation)法製備奈米複合材料之基本原理……………….8
2.2.2插層嵌入(intercalation)法製備奈米複合材料之文獻回顧……………….9
2.3 研究動機及目的……………………………………………………………….15

第三章 實驗部分……………………………………………………….......16

3.1實驗材料………………………………………………………………………....16
3.2實驗儀器………………………………………………………………………....17
3.3 有機/無機奈米混成材料之製備………………………………………………..19
3.3.1 溶膠-凝膠(sol-gel)法製備matrix/SiO2奈米複合材料…………………....19
3.3.2 插層嵌入(intercalation)法製備matrix/clay奈米複合材料……………….19

第四章 溶膠-凝膠法製備matrix /SiO2奈米複合材料……………………21

4.1 Matrix characterization…………………………………………………………...21
4.2 Matrix/MTOS之系統……………………………………………………………21
4.2.1結構鑑定……………………………………………………………………..21
4.2.2微結構分析………………………………………………………………….22
4.2.3物理性質分析………………………………………………………………..22
4.2.4電氣性質分析……………………………………………………………......23
4.3 Matrix/coupling agent之系統……………………………………………………23
4.3.1結構鑑定……………………………………………………………………..23
4.3.2微結構分析…………………………………………………………………..24
4.3.3物理性質分析………………………………………………………………..24
4.3.4電氣性質分析………………………………………………………………..25
4.4 Matrix/MTOS/coupling agent之系統……………………………………………25
4.4.1結構鑑定……………………………………………………………………..25
4.4.2微結構分析…………………………………………………………………..26
4.4.3物理性質分析………………………………………………………………..26
4.4.4電氣性質分析………………………………………………………………..27

第五章 插層嵌入法製備matrix/clay奈米複合材料……………………...28

5.1 混摻溫度對matrix /clay奈米複合材料之形態學影響………………………...28
5.1.1 Epoxy/clay hybrids…………………………………………………………..29
5.1.2 Curing agent/clay hybrids…………………………………………………...30
5.1.3 Matrix/clay hybrids………………………………………………………….30
5.1.3a Matrix/clay hybrids (epoxy與curing agent同時混摻)………………31
5.1.3b Matrix/clay hybrids (epoxy與curing agent分開混摻)………………32
5.1.4 Matrix/clay奈米複合材料之物理性質分析………………………………..32
5.2 改質劑對matrix/clay奈米複合材料之形態學影響……………………………34
5.2.1 高clay含量下創造脫層結構………………………………………………34
5.2.2 低clay含量下創造插層結構………………………………………………35

第六章 結論………………………………………………………...............36

參考文獻……………………………………………………………………...95








流程目錄(scheme)


Scheme 1 Illustration of the hydrolysis and condensation reactions of MTOS……………………………………………..........37
Scheme 2 Flow chart of the matrix/MTOS system and matrix/GPOS (coupling agent) system……………………………………....................38
Scheme 3 Flow chart of the matrix/MTOS/coupling agent system....39
Scheme 4 Illustration of the matrix/MTOS systems…………………40
Scheme 5 Illustration of the matrix/coupling agent systems…40
Scheme 6 Preparation of the organic modified clay………………41
Scheme 7 Preparation of C-PSi (C-Si via condensation)…………42


表目錄

Table 1 Composition of the matrix/SiO2 hybrid nanocomposites… 43
Table 2 Physical properties of the matrix/SiO2 nanocomposites in
matrix/MTOS systems……………………………………… 44
Table 3 Physical properties of the matrix/SiO2 nanocomposites in matrix/coupling agent systems……………………………... 45
Table 4 Physical properties of the matrix/SiO2 nanocomposites in matrix/MTOS/coupling agent systems……………………... 46
Table 5 Composition of the epoxy/clay and curing agent/clay hybrids……………………………………………………… 47
Table 6 Composition of the matrix/clay hybrid nanocomposites…… 48
Table 7 Morphological results for various matrix/clay …………….49
Table 8 Physical properties of matrix/clay nanocomposites………...49


圖目錄

Fig.1 Gel formation in catalyzed system………………………………… 50
Fig.2 Control of sol-gel processing with organic acid DCCAs………51
Fig.3 Structure of montmorillonite………………………………………. 52
Fig.4 Orientations of alkylammonium ions in the galleries of layered silicates with different layer charge densities…………………53
Fig.5 Different type of composite arising from the interaction of layered silicates and polymers……………………………………………... 54
Fig.6 DSC thermograms of the CNE/MBA hybrids, at heating rate of
20 ℃/min…………………………………………………………..................55
Fig.7 FTIR spectra of the neat CNE (a), neat MBA (b), and its uncured matrix (c), cured matrix (d)………………………………………...56
Fig.8 The particle size distribution of SiO2 via hydrolysis and condensation of MTOS at pH=2 …………………………………..............57
Fig.9 The SEM micrograph of MTOS via hydrolysis and condensation at pH=2……………………………………………………………...................58
Fig.10 FTIR spectra of the uncured matix (a), cured matrix (b), and with different levels of MTOS content, (c) 5 phr, (d) 10 phr, (e) 20 phr................................................................59
Fig.11 The SEM micrograph of matrix/SiO2 nanocomposites in matrix/MTOS systems, (a) 5 phr MTOS, (b) 10 phr MTOS, (c) 20phr MTOS ………………………………………………………...............................60
Fig.12 The TGA curves of matrix/SiO2 nanocomposites with different levels of MTOS content in air atmosphere, at heating rate of 20 ℃/min…………………………………………………………….....................61
Fig.13 The tan δ versus temperature for matrix/SiO2 nanocomposites with different levels of MTOS content, at heating rate of 10 ℃/min.62
Fig.14 The storage modulus versus temperature for matrix/SiO2 nanocomposites with different levels of MTOS content, at heating rate of 10 ℃/min. …………………………………………………...............63
Fig.15 The particle size distribution of SiO2 via hydrolysis and condensation of GPOS at pH=2 …………………………………..............64
Fig.16 The SEM micrograph of GPOS via hydrolysis and condensation at pH=2………………………………………………………………..................65
Fig.17 FTIR spectra of the neat GPOS (a), neat MBA (b), and its uncured hybrids (c), cured hybrids (d).…………………….………………..66
Fig.18 DSC thermograms of the MBA/GPOS hybrids, at heating rate of
20 ℃/min…………………………………………………………....................67
Fig.19 FTIR spectra of the neat CNE (a), neat GPOS (b), uncured matrix (c), cured matrix (d), and with different levels of GPOS content, (e) 5 phr, (f) 10 phr, (g) 20 phr…………………………………….68
Fig.20 The SEM micrograph of matrix/SiO2 nanocomposites in matrix/GPOS systems, (a) 5 phr GPOS, (b) 10 phr GPOS, (c) 20phr GPOS………………………………………………………...........................69
Fig.21 The TGA curves of matrix/SiO2 nanocomposites with different levels of GPOS content in air atmosphere, at heating rate of 20 ℃/min…………………………………………………………….....................70
Fig.22 The tanδ versus temperature for matrix/SiO2 nanocomposites with different levels of GPOS content, at heating rate of 10 ℃/min.71
Fig.23 The storage modulus versus temperature of matrix/SiO2 nanocomposites with different levels of GPOS content, at heating rate of 10 ℃/min………………………………………………….................72
Fig.24 FTIR spectra of the neat CNE (a), neat GPOS (b), uncured matrix (c), cured matrix (d) and the matrix/MTOS (10 phr)/GPOS system with different levels of GPOS content, (e) 0 phr, (f) 5 phr, (g) 10 phr…………………………………………………………………...........73
Fig.25 The SEM micrograph of matrix/SiO2 nanocomposites in matrix/MTOS/GPOS systems, (a) 10 phr MTOS with 5 phr GPOS, (b) 10 phr MTOS with 10 phr GPOS…………………………….......................74
Fig.26 The TGA curves of matrix/MTOS (10 phr)/GPOS systems with different levels of GPOS content in air atmosphere, at heating rate of 20 ℃/min………………………………………………………...................75
Fig.27 The tanδ versus temperature for matrix/MTOS (10 phr)/GPOS systems with different levels of GPOS content, at heating rate of 10 ℃/min………………………………………………………….......................76
Fig.28 The storage modulus versus temperature for matrix/MTOS
(10 phr)/GPOS systems with different levels of GPOS content, at heating rate of 10 ℃/min…………………………………………...............77
Fig.29 X-ray diffraction patterns of the neat MMT (a) and CC (b), at scanning rate of 0.5 deg./min……………………………………….........78
Fig.30 The TGA curves of MMT and CC, at heating rate of 20 ℃/min…79
Fig.31 X-ray diffraction patterns of the CC (a), epoxy/clay hybrids (CC=3 phr) upon mixing 15 min with different temperature, (b) 90 ℃, (c) 120 ℃, (d) 150 ℃, (e) 180 ℃, (f) 210 ℃, and epoxy/clay hybrids (CC=5 phr) upon mixing 15 min. at 210 ℃ (g), at scanning rate of 0.5 deg/min……………………………………….....................80
Fig.32 X-ray patterns of the CC (a), neat MBA (b), MBA upon mixing
15 min at 90 ℃ (c), and MBA/CC hybrids (CC=3 phr) with different temperature, (d) 90 ℃, (e) 120 ℃, at scanning rate of 0.5 deg/min……….......................................................81
Fig.33 X-ray patterns of the CC (a), and the uncured matrix/CC systems with different levels of CC content, (b) 1 phr, (c) 3 phr, (d) 5 phr, (e) 10 phr on the blending temperature of 90 ℃, at scanning rate of 0.5 deg/min.......................................82
Fig.34 X-ray patterns of the CC (a), and the cured matrix/CC systems with different levels of CC content, (b) 1 phr, (c) 3 phr, (d) 5 phr, (e) 10 phr on the blending temperature of 90 ℃, at scanning rate of 0.5 deg/min……………………………………………………..82
Fig.35 X-ray patterns of the CC (a), and the uncured matrix/CC systems with different levels of CC content, (b) 1 phr, (c) 3 phr, (d) 5 phr, (e) 10 phr on the blending temperature of 120 ℃, at scanning rate of 0.5 deg/min……………………………………………………...83
Fig.36 X-ray patterns of the CC (a), and the cured matrix/CC systems with different levels of CC content, (b) 1 phr, (c) 3 phr, (d) 5 phr, (e) 10 phr on the blending temperature of 120 ℃, at scanning rate of 0.5 deg/min……………………………………………………...83
Fig.37 TEM micrographs of the cured matrix/CC with 10 phr of CC on the blending temperature of 120 ℃, (a) low magnification, (b) high magnification…………………………………………………....................84
Fig.38 X-ray patterns of the CC (a), and the uncured matrix/CC systems with different levels of CC content, (b) 1 phr, (c) 3 phr, (d) 5 phr, (e) 10 phr on the blending temperature of 210 ℃, at scanning rate of 0.5 deg/min……………………………………………………...85
Fig.39 X-ray patterns of the CC (a), and the cured matrix/CC systems with different levels of CC content, (b) 1 phr, (c) 3 phr, (d) 5 phr, (e) 10 phr on the blending temperature of 210 ℃, at scanning rate of 0.5 deg/min……………………………………………………...85
Fig.40 The TGA curves of matrix/CC nanocomposites with different levels of CC content on the blending temperature of 90 ℃ in air atmosphere, at heating rate of 20 ℃/min…………………………..........86
Fig.41 The TGA curves of matrix/CC nanocomposites with different levels of CC content on the blending temperature of 120 ℃ in air atmosphere, at heating rate of 20 ℃/min…………………………..........86
Fig.42 The tan δ versus temperature of matrix/CC nanocomposites with different levels of CC content on the blending temperature of 90 ℃, at heating rate of 10 ℃/min……………………………………........87
Fig.43 The tan δ versus temperature of matrix/CC nanocomposites with different levels of CC content on the blending temperature of 120 ℃, at heating rate of 10 ℃/min…………………………………….......87
Fig.44 The storage modulus versus temperature of matrix/CC
nanocomposites with different levels of CC content on the blending temperature of 90 ℃, at heating rate of 10 ℃/min……..............88
Fig.45 The storage modulus versus temperature of matrix/clay
nanocomposites with different levels of CC content on the blending temperature of 120 ℃, at heating rate of 10 ℃/min…….............88
Fig.46 X-ray patterns of the neat MMT (a), CC (b), and C-Si (c)……89
Fig.47 The TGA curves of MMT and C-Si in N2 atmosphere, at heating rate of 20 ℃/min………………………………………………….................90
Fig.48 X-ray patterns of the cured matrix/C-Si systems with different levels of C-Si content, (a) 5 phr, (c) 10 phr, and the cured matrix/CC systems with different levels of CC content on the blending temperature of 120 ℃, (b) 5 phr, (d) 10 phr, at scanning rate of 0.5 deg./min………………….……………………………..............91
Fig.49 X-ray patterns of CC (a), C-Si (b), and C-PSi (c)………………92
Fig.50 X-ray patterns of (a) C-PSi (WAXD), and the uncured matrix/C-PSi systems with different levels of C-PSi content on the blending temperature of 120 ℃, (b) 5 phr (SAXS), (c) 10 phr (SAXS), at scanning rate of 0.5 deg./min…………………………. ...................93
Fig.51 X-ray patterns of C-PSi (a), the cured matrix/C-PSi systems with different levels of C-PSi content, (b) 5 phr, (d) 10 phr, and the cured matrix/CC systems with different levels of CC content on the blending temperature of 120 ℃, (c) 5 phr, (e) 10 phr, at scanning rate of 0.5 deg./min………………………………………............94
參考文獻

【1】Lee H., K. Neville, 1967, Handbook of Epoxy Resin, 1.
【2】J. Wen, and G. L. Wilkes, 1996, Chem. Mater. 8, 1667.
【3】Y. L. Liu, C. Y. Hsu, W. L. Wei, R. J. Jeng, 2003, Polymer, 44, 5159.
【4】R. Tamaki, J. Choi, R. M. Laine, 2003, Chem. Mater. 15, 793.
【5】W. C. Liu, C. C. Yang, W. C. Chen, B. T. Dai, M. S. Tsai, 2002, J. Non-Cryst. Solids, 311, 233.
【6】L. H. Lee, W. C. Chang, W. C. Liu, 2002, J. Polym. Sci. Part A : Polym. Chem. 40, 1560.
【7】A. Morikawa, H. Yamaguchi, M. Kakimoto, Y. Imai, 1994, Chem. Mater. 6, 913.
【8】S. Wang, Z. Ahmad, J. E. Mark, 1994, Chem. Mater. 6, 943.
【9】Y. Chen, J. O. Iroh, 1999, Chem. Mater. 11, 1218.
【10】M. Ochi, R. Takahashi, 2001, J. Polym. Sci. Part B : Polym. Phys. 39, 1071.
【11】G. H. Hsiue, Y. L. Liu, H. H. Liao, 2001, J. Polym. Sci. Part A : Polym. Chem. 39, 986.
【12】C. L. Chiang, C. C. M. Ma, 2002, Eur. Polym. J. 38, 2219.
【13】X. Y. Shang, Z. K. Zhu, J. Yin, X. D. Ma, 2002, Chem. Mater. 14, 71.
【14】Y. L. Liu, Y. L. Lin, C. P. Chen, R. J. Jeng, 2003, J. Appl. Polym. Sci. 90, 4047.
【15】Y. L. Liu, C. S. Wu, Y. S. Chiu, W. H. Ho, 2003, J. Polym. Sci. Part A : Polym. Chem. 41, 2354.
【16】W. Qiu, Y. Luo, F. Chen, Y. Duo, H. Tan, 2003, Polymer, 44, 5821.
【17】G. H. Padron, F. Rojas, M. G. Garduno, M. A. Canseco, V. M. Castano, 2003, Materials Science & Engineering A, 355, 338.
【18】W. H. Weng, H. Chen, S. P. Tsai, J. C. Wu, 2004, J. Appl. Polym. Sci. 91, 532.
【19】J. Macan, H. Ivankovic, M. Ivankovic, H. J. Mencer, 2004, J. Appl. Polym. Sci. 92, 498.
【20】M. Ochi, T. Matsumura, 2005, J. Polym. Sci. Part B : Polym. Phys. 43, 1631.
【21】T. J. Pinnavaia, G. W. Beall, 2000, Polymer-Clay Nanocomposites, Wiley, New York.
【22】P. C. Lebaron, Z. Wang, T. J. Pinnavaia, 1999, Appl. Clay Sci. 15, 11.
【23】M. Alexandre, P. Dubois, 2000, Materials Science & Engineering R, 28, 1.
【24】K. Yano, A. Usuki, A. Okada, T. Kurauchi, O. Kamigaito, 1993, J. Polym. Sci. Part A : Polym. Chem. 31, 2493.
【25】T. Lan, P. D. Kaviratna, T. J. Pinnavaia, 1995, Chem. Mater. 7, 2144.
【26】K. Yano, A. Usuki, A. Okada, T. Kurauchi, O. Kamigaito, 1997, J. Polym. Sci. Part A : Polym. Chem. 35, 2289.
【27】Y. Yong, Z. K. Zhu, J. Yin, X. Y. Wang, Z. E. Qi, 1999, Polymer, 40, 4414.
【28】H. L. Tyan, Y. C. Liu, K. H. Wei, 1999, Chem. Mater. 11, 1942.
【29】H. B. Hsueh, C. Y. Chen, 2000, Polymer, 44, 5275.
【30】M. H. Choi, I. J. Chung, J. D. Lee, 2000, Chem. Mater. 12, 2977.
【31】I. J. Chin, T. T. Albrecht, H. C. Kim, T. P. Russell, J. Wang, 2001, Polymer, 42, 5947.
【32】X. Kornmann, H. Lindberg, L. A. Berglund, 2001, Polymer, 42, 1303.
【33】H. Y. Byun, M. H. Choi, I. J. Chung, 2001, Chem. Mater. 13, 4221.
【34】H. L. Tyan, Y. C. Liu, K. H. Wei, 2001, Chem. Mater. 13, 222.
【35】T. Agag, T. Koga, T. Takeichi, 2001, Polymer, 42, 3399.
【36】N. Salahuddin, A. Moet, A. Hiltner, E. Baer, 2002, Eur. Polym. J. 38, 1477.
【37】J. Zhu, P. Start, K. A. Mauritz, C. A. Wilkie, 2002, J. Polym. Sci. Part A : Polym. Chem. 40, 1498.
【38】A. Yasmin, J. L. Abot, I. M. Daniel, 2003, Scripta Materialia, 49, 81.
【39】D. Kong, C. E. Park, 2003, Chem. Mater. 15, 419.
【40】S. Ganguli, D. Dean, K. Jordan, G. Price, R. Vaia, 2003, Polymer, 44, 1315.
【41】S. Ganguli, D. Dean, K. Jordan, G. Price, R. Vaia, 2003, Polymer, 44, 6901.
【42】I. Isik, U. Yilmazer, G. Bayram, 2003, Polymer, 44, 6371.
【43】T. Y. Tsai, S. T. Lu, C. H. Li, J. Y. Hsu, 2005, Polymer Symposium preprint, F-P-II-005.
【44】C. J. Brinker, 1985, J. Non-Cryst. Solids, 70, 301.
【45】D. R. Ulrich, 1988, Chemtech. April. 242.
【46】B. E. Yoldas, 1984, J. Non-Cryst. Solids, 63, 145
【47】Ian Hamerton, Chemistry and Technology of Cyanate Ester Resins, Blackie Academic & Professional, New York.
【48】G. Hougham, G. Tesoro, J. Shaw, 199, Macromoleculars. 27, 3642.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔