|
[1]D.E. Goldberg, 1989, Genetic Algorithms in Search Optimization and Machine Learning, Addison Wesley. [2]J.C. Bezdeck, R. Ehrlich, and W. Full, 1984, “FCM:Fuzzy C-Means Algorithm”, Computers and Geosciences. [3]J.C. Bezdek, 1981, Pattern recognition with fuzzy objective function algorithm algorithms, New York. [4]N.L. XIE and G. BENI, 1991, “A Validity measure for fuzzy clustering”, IEEE Trans. , PAMI-3, (8) , pp. 841-846. [5]S.II. Kwon, 1998, “Cluster validity index for fuzzy clustering”, ELECTRONICS LETTER, vol. 34, no. 22, pp. 2176-2177. [6]A.-O. Boudraa, 1999, “Dynamic estimation of number of clusters in data sets”, ELECTRONICS LETTER, vol. 35, no. 19, pp. 1606-1608. [7]D.-J. KIM, Y.-W. PARK, and D.-J. Park, 2001, “A Novel Validity Index for Determination of the Optimal Number of Clusters”, IEICE. Trans. Inf. & Syst. , vol. E84 D, no 2, pp. 281-285, February. [8]http://www.ics.uci.edu/~mlearn/MLRepository.html [9]曾憲雄,蔡秀滿,蘇東興,曾秋蓉,王慶堯,民94年,資料探勘 Data mining,第六章,旗標出版,臺北市。 [10]G.H. Ball and D.J. Hall, 1965, “ISODATA: A novel method of data analysis and classification”, Technical Report, Stanford Universuty. [11]J. C. Dunn, 1973, “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,” J. Cybern. , vol. 3, no. 3, pp. 32–57. [12]L. J. Hubert and P. Arabie, 1985, “Comparing partitions”, J. Classification, vol. 2, pp. 193–218. [13]D. L. Davies and D. W. Bouldin, 1979, “A cluster separation measure”, IEEE Trans. Pattern Anal. Machine Intell. , vol. 1, no. 4, pp. 224–227. [14]Y. FUKUYAMA and M. SUGENO, 1989, “A new method of choosing the number of clusters for the FCM method”, Proc. 5th Fuzzy Syst. Symp, pp. 247-250. [15]R.C. DUBES, 1987, “How many clusters are best? – An experiment”, Pattern Recognit. , vol. 20, pp. 645-663. [16]J.M. COGGINS and A.K. JAIN, 1985, “A spatial filtering approach to texture analysis”, Pattern Recognit. , vol. 3, pp. 195-203. [17]R. DUBES and A.K. JAIN, 1979, “Validity studies in clustering methodologies”, Pattern Recognit. , vol. 11, pp. 235-253.
|