(3.220.231.235) 您好!臺灣時間:2021/03/08 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾士耿
研究生(外文):Shin-Keng Tseng
論文名稱:以神經網路為基底之張力控制應用於鋼筋軋延系統
論文名稱(外文):Tension Control System Application in Roller of Steel Bar Using Neural Network
指導教授:葛世偉葛世偉引用關係方俊雄方俊雄引用關係
指導教授(外文):Shih-Wei KauChun-Hsiung Fang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:65
中文關鍵詞:乙太網路生產管理資料庫遠端監控張力控制神經網路
外文關鍵詞:Ethernetproduction managementdatabaseremote monitoring and controlTension controlneural network
相關次數:
  • 被引用被引用:2
  • 點閱點閱:631
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本文之目標以提昇傳統鋼筋產業製程的效率與品質為主,影響製程效率與品質之因素有—製程與排程之瓶頸、物料傳輸之瓶頸、控制系統非最佳化、以及參數因製程變動浮動不定等因素,如全面更新設備所費不貲,尤其對中小企業是一沉重之負擔,唯有逐步、局部合理化與最佳化,方可花費最小,達最佳之效益。故依此一原則,首先對製程進行合理化與資訊網路化、e化,找尋最佳之資料流程與排程,與物料傳輸流程;此故,首需藉由製程之控制系統網路化—建立乙太網路之控制系統,將各製程關鍵瓶頸點網路e化,使控制工程師能快速且正確經由PLC/PC之網路,將鋼筋生產流程輸入適當的參數,並由監控系統遠端監測整個製程的關鍵細節與管制。且配合自行開發的生產管理專家系統和資料庫的整合,針對生管、品管、排程、人員等資訊管理方式,來提昇鋼筋製程的網路整合能力,藉以減少人力資本、提昇工作效率、降低成本支出、增加競爭力。並將前述各關鍵之系統加以整合、監控、管理等三大目標應用於實際鋼筋製程廠,並經實地測試與修正改良,達到製程e 化及遠端監控研究的實用效能。
其次,討論製程控制器響應與穩定度之改善,此一部份著重於鋼筋軋延製程中的最佳化控制探討,由於鋼筋是基礎建設的必需品,其品質的優劣影響建設的可靠度與穩定性,如何確保製程品質的穩定及效率提昇增加競爭性,是現今重要課題,而鋼筋拉力與張力特性,受軋延製程之張力控制影響甚大,如何維持軋延恆定張力控制為其重點;所以必須在軋鋼單元中的控制器加以探討,傳統軋延張力控制使用PID控制器方式進行,唯這種方式需要準確的數學模式,然而鋼筋製程,欲取得準確的數學模式較困難,因此傳統製程依靠人為調整,因而設定的參數並非一定是最佳值,因此本文就在固有的控制迴路上加上神經網路來加速原本系統控制響應,進而提高其產品品質。
The purpose of this thesis is to improve efficiency and quality for traditional steel bar factory. The factors of influencing effect and quality in manufacturing process are bottleneck of manufacturing process and scheduling process, bottleneck of materiel transmission, non optimum in control system, and fluctuating parameter as a result of alteration in manufacturing process and more. To renew entire apparatus costs a great deal. To renew entire apparatus costs a great deal. Particularly in Small and Medium Enterprises, it is a burden. Only gradual, partial rationalization and optimum can achieve at optimum efficiency and minimum spending. Based on that, firstly, we undergo rationalization, information over the internet and e-type in manufacturing process to find optimal information flow, scheduling flow and material transmission flow. And depending on establishing Ethernet control system in manufacturing process, we get e-type network for the keys bottleneck. Then the control engineers can input appropriate parameters in steel bar manufacturing process quickly and correctly through PLC/PC network. Furthermore, we use monitor system on remote controlling and monitoring for keys bottleneck in all manufacturing process. In order to reduce manpower expenses, enhance work efficiency, reduce the cost and enhance network integrative ability, we integrate expert system of production management and database aiming at management such as production, quality, scheduling process, workers etc,. We finally combine three major objectives--the foregoing keys system, monitoring system, and management system and apply to the cooperative factory. Through actual operation, revision and improvement, we get the practical result of e - type procreation process and remote monitor.
The next, we are improving response and stability in manufacturing processes controller. In the part stressed optimum control in steel bar roller mill. Steel bar is a requirement in a building, and its quality affects dependability and stability of the building. How to ensure stable quality of procreation process, enhance efficiency and increase competitive edge is one of important topics nowadays. Steel pulling force and tensile force are influenced by tension control of a roller mill. So the focus is how to maintain constant in tension control. In a traditional roller mill tension controller always uses PID or linear quadratic. This method requires accurate math function, but it is just hard to get accurate math function in the steel bar manufacturing processes. So the controller depends on workers to adjust parameter in a traditional roller mill but the adjusted parameter maybe not the best. Our purpose is to add neural network into inherent PID controller loop in order to accelerate the system response and enhance product quality.
中文摘要------------------------------------------------------------------------------------------- Ⅰ
英文摘要------------------------------------------------------------------------------------------- Ⅲ
致謝------------------------------------------------------------------------------------------------- Ⅴ
目錄------------------------------------------------------------------------------------------------- Ⅵ
表目錄---------------------------------------------------------------------------------------------- Ⅶ
圖目錄---------------------------------------------------------------------------------------------- Ⅷ
緒論------------------------------------------------------------------------------------------------- 1
1.1研究動機-------------------------------------------------------------------------------- 1
1.2研究方法-------------------------------------------------------------------------------- 2
1.3論文大綱-------------------------------------------------------------------------------- 3
第二章 鋼筋製程系統架構------------------------------------------------------------------- 5
2.1鋼筋製程流程-------------------------------------------------------------------------- 6
2.2製程監控系統架構-------------------------------------------------------------------- 11
2.3軋延控制系統架構-------------------------------------------------------------------- 13
第三章適應性神經網路------------------------------------------------------------------------ 16
3.1適應性神經網路----------------------------------------------------------------------- 16
3.2適應神經網路應用於直流馬達的速度控制------------------------------------ 22
第四章案例研究--------------------------------------------------------------------------------- 26
4.1製成監控系統功能-------------------------------------------------------------------- 26
4.2軋延系統模擬過程-------------------------------------------------------------------- 37
第五章結論與展望------------------------------------------------------------------------------ 53
5.1結論--------------------------------------------------------------------------------------- 53
5.2未來展望-------------------------------------------------------------------------------- 54
參考文獻------------------------------------------------------------------------------------------- 55
附錄一現場元件功能說明及位置配置圖------------------------------------------------- 58
[1]V.Etxebarria,PhD,1994, “Adaptive control of discrete systems using neural networks”, IEE Proc. Control Theory, Vol.141,pp.209-215, Appl.
[2]王偉竹,方志行,蔡銘輝,2001, “PROFIBUS-DP網路通訊工業驅動控制應用”,電機月刊,11卷,1期,頁167-174,元月。
[3]葛世偉,2002,“伺服控制系統在線材張力控制之應用”,CIACPA,頁C1-22-25。
[4]J. G. Zieger and N. B. Nichols,1942,“Optimum Setting for Automatic Controllers”, Trans. ASME, Vol. 64, pp.759-768.
[5]楊智翔,2004,壓電致動器磁滯適應神經控制補償之研究,國立高雄應用科技大學機械與精密工程研究所,碩士論文。
[6]Dongfeng Wang; Pu Han; Qigang Guo,2004, “Neural network self-tuning PID control for boiler-turbine unit”, Intelligent Control and Automation, WCICA 2004. Fifth World Congress on Volume 6, pp.5175 - 5179, 15-19 June.
[7]Omatu, S. and Yoshioka, M.,1997,“Self-tuning neural-PID control and applications”, IEEE International Conference on Systems, Man, and Cybernetics Computational Cybernetics and Simulation, Vol. 3, pp.1985-1989.
[8]Narendra, K. S., and Parthasarathy, K.,1990, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks, Vol. 1, No. 1, pp. 4-27, March.
[9]Psaltis, D., Sideris, A. and Yamamura, A,1989, “A multilayered neural network controller,” IEEE Control Systems Magazine, Vol. 8, No. 2, pp. 17-21.
[10]Colina-Morles, E,1994, “On-line neural network control applications”, Neural Networks, IEEE World Congress on Computational Intelligence.,Vol. 4, pp.2494 – 2499,27 June-2 July.
[11]Guez, A.; Eilbert, J.L.; Kam, M,1988,“Neural network architecture for control”, Control Systems Magazine, IEEE , Vol. 8, Issue 2, , pp.22 – 25, April.
[12]Jianyuan Hu; Xinhan Huang; Jinjiang Chen,1992,“Neural networks adaptive control”, Industrial Electronics Proceedings of the IEEE International Symposium ,vol.1,pp.117 - 120,25-29 May.
[13]Boskovic, J.D.,1997,“A stable neural network-based adaptive control scheme for a class of nonlinear plants”, Decision and Control, Proceedings of the 36th IEEE Conference, vol.1 , pp.472 - 477 ,10-12 Dec.
[14]Patino, H.D.; Liu, D.,2000, “Neural network-based model reference adaptive control system”, Systems, Man and Cybernetics, Part B, IEEE Transactions , Vol. 30, Issue 1, pp.198 – 204,Feb.
[15]Tae-Gyoo Lee; Jin-Hwan Kim; Ho-Joon Park; Jae-Chul Oh; Uk-Youl Huh,1996, “A speed control of motor systems with a feedforward neural network-its application to SR motor”, Industrial Electronics, Control, and Instrumentation, Proceedings of the 1996 IEEE IECON 22nd International Conference ,vol.2 ,pp.898 - 903, 5-10 Aug.
[16]施威銘研究室著,2000,SQL 2000設計實務,旗標出版股份有限公司。
[17]施威銘研究室著,2000,SQL 2000管理實務,旗標出版股份有限公司。
[18]陳徹工作室編著,2002,Visual Basic 資料庫程式設計實務,松崗電腦股份有限公司。
[19]王國榮編著,2002,Visual Basic6.0 資料庫程式設計,旗標出版股份有限公司。
[20]王國榮編著,1998,新觀念的Visual Basic6.0,旗標出版股份有限公司。
[21]施威銘研究室著,2000,Windows 2000 Server系統實務,旗標出版股份有限公司。
[22]東和鋼鐵著,鋼筋Level 2管理系統,東和鋼鐵股份有限公司。
[23]王國榮編著,2002,Visual Basic 6.0 實戰講座,旗標出版股份有限公司。
[24]OMRON網路模組操作手冊,台灣歐姆龍。
[25]OMRON FINSgateway通訊手冊,台灣歐姆龍。
[26]廖文輝、周志宏編著,2001,圖形監控, 全華科技圖書。
[27]OMRON PLC 操作手冊,台灣歐姆龍。
[28]葉怡成,1995,類神經網路模式應用與實作,儒林圖書。
[29]王進德、蕭大全,1994,類神經網路與模糊控制理論入門,全華科技圖書股份有限公司。
[30]焦李成,1991,神經網路系統理論,儒林圖書。
[31]陳燕慶、鹿浩,1992,神經網路理論及其在控制工程中的應用,儒林圖書。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔