跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張國雄
研究生(外文):Kuo-Hsiung Chang
論文名稱:決策樹用於股市之研究
論文名稱(外文):An implementation of the Decision Tree for Stock Market Analysis
指導教授:楊振銘楊振銘引用關係
指導教授(外文):Cheng-Ming Yang
學位類別:碩士
校院名稱:立德管理學院
系所名稱:應用資訊研究所
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:37
中文關鍵詞:資料探勘分類決策樹
外文關鍵詞:decision treeclassificationdata mining
相關次數:
  • 被引用被引用:16
  • 點閱點閱:926
  • 評分評分:
  • 下載下載:315
  • 收藏至我的研究室書目清單書目收藏:4
本研究係使用資料探勘的技術尋找股票市場中真正具有投資價值,財報健全,體質優良的好公司。大部分的股市研究皆著重在技術分析上,而忽略上市、櫃公司本身的劣,導致投資嚴重失利,血本無歸。
我們可使用決策樹導向的分類方法將各上市、櫃公司的財報資料,建立模型,引導一般投資大眾,如何研究公司財報,作為正確投資的步驟,進一步了解公司的體質,減少投資風險,這是投資者最基本的工作。因為股市的投資過程,應先求不失敗,再求穫利,所以財務報表分析是股票投資的最後一道防線。
由決策樹建立的模型規則,分析台灣集中市場在2003年至2005年間各公司所提供之財務報表,找出體值健全之公司,再從這些質優的公司,尋找投資標的。
In this paper, we will use Data Ming to find some real , good companies in the stock market . We can choose some valuable ones to invest , the financial conditions of which are sound and good . They must be high quality. In the past , most of the researchers only emphasize the stock analysis skills and ignore each company itself is good or bed in organization , management , financial data and reporters , including the rest of aspects .As a result , most of investors lost their money deadly .
Recently , you can apply Classification by Decision Tree Induction ( CDTI ) to set a formula for all company's financial conditions . By this way , we could understand their real conditions easily and watch them closely . We would teach every investor how to read and understand each company's financial basic data and reporters . Then we can get their credibility and decrease our lost .On the venture , we should stand on a safe area(no-failure) and easily we can seek for benefits . The analysis and understanding for company's financial conditions and reporters are our the last line of battle .
With the rules of CDTI (Classification by Decision Tree Induction) , we can analyze Taiwan companies' financial data ( 2003 to 2005 ) , therefore , we could find sound and good companies in our market .High quality companies are the goals we invest.
中文摘要.................I
英文摘要.................II
誌謝.................III
目錄.................IV
表目錄.................V
圖目錄.................VI
第壹章 緒論
1.1 研究動機.................1
1.2 論文架構.................2
第貳章 文獻回顧與探討
2.1 資料挖掘概論.................3
2.2 使用決策樹導向的分類方法
(Classification by Decision Induction).................8
2.3 決策樹導向的演算法.................9
2.4 分類的步驟.................12
第參章 問題及方法描述
3.1 股市資料和研究主題.................14
3.2 方法流程.................22
3.3 決策樹歸納法.................23
3.4 由決策樹淬取出分類規則.................25

第肆章 實驗結果與分析
4.1 實驗介紹.................27
4.2 效果評估.................32
第伍章 結論及未來展望
5.1 結論.................34
5.2 未來展望.................34
參考文獻.................35
[1] 呂宗耀、張獻祥,投資者的修練,時報文化出版,2005年1月31日。

[2] 呂宗耀,聚焦,今周刊出版社,2005年1月。

[3] 巴菲特,勝券在握,遠流出版社。

[4] 阮士峰,資料探勘在股市序列型樣的應用, 國立東華大學資訊工程研究所在職專班論文,民國九十三年七月。

[5] 林成、楊馥聰,K棒兵法,建安出版社,pp.53, 2002。

[6] 簡辰丞,結合MACD與類神經模糊技術之股票預測模型—以臺灣金融股為例,靜宜大學,碩士論文。

[7] 方旭(民國89 年) ,選股致富50式,星定石文化。

[8] 張政一,類神經網路於有價證券預測股價及漲跌之研
究,私立中國文化大學商學院國際企業管理研究所碩士論文,民國89 年。

[9] 陳之大、曹曉東、賀學會、劉藝(民國88 年) ,股票家超級聖典,台灣實業文化。

[10] 江玥慧,時間性資料庫中相似曲線的搜尋— 以台灣股價資料庫為例,國立台灣大學資訊管理研究所碩士論文,1998。

[11] 曾守正, “從想像中找出事實:如何使 Data Mining 成為貴公司的一部份?” IBM 與國立交通大學合作之DB2 資訊月刊, 第17期, Nov. 1997.

[12] C. C. Aggarwal, and P. S. Yu, “A New Approach to Online Generation of Association Rules,” IEEE Trans. of Knowledge and Data Eng., Vol. 13, NO 4, pp.527-540, July/August 2001.

[13] R. Agrawal, T. Imelinski and A. Swami, “Mining Association Rules between Set of Itemset in Large Database,” Proc. ACM Special Interest Group on Management of Data (SIGMOD), pp. 207-216, May 1993.

[14] R. Agrawal, and R. Srikant, “Fast Algorithm for Mining Association Rules in Large Databases, ”Proc. 20th Very Large Database Conf., pp.478-499, ept.,1994.

[15] M. J. A. Berry and G. S. Linoff, Data Mining Techniques for Marketing, Sales,
and Customer Support, John Wiley & Sons. Inc., 1997.

[16] R. Brin, R. Motwani, J. Ullman and S. Tsur, ”Dynamic Itemset Counting and Implication Rules for Market Basket Data,” Proc. ACM Special Interest Group
on Management of Data (SIGMOD), Vol. 26(2), pp.255-264, May 1997.

[17] M. S. Chen, J. Han. and P.S. Yu, “Data Mining: An Overview from a Database Perspective,” IEEE Trans. on Knowledge and Data Eng., Vol. 8, No. 6, pp.
866-882, Dec. 1996.

[18] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman, and C. Yang, “Finding Interesting Associations without Support Pruning,” IEEE Trans. on Knowledge and Data Eng., Vol 13, No.1, pp. 64-78, January/February2001.

[19] J. Han and Y. Fu, “Mining Multiple-level Association Rules in Large Databases,” IEEE Trans. on Knowledge and Data Eng., Vol.11. No.5, pp. 798-805, 1999.

[20] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan
Kaufmann Inc. 2001.

[21] IBM Quest data Mining Project, “Quest Synthetic Date Generation Code,” “http://www.almaden.ibm.com/cs/quest/ syndata.html”, 1996.

[22] B. Liu, W. Hsu and Y. Ma, “Mining Association Rules with Multiple Minimum Supports”, Proc. 5th ACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining, pp.337-341, May 1999.

[23] B. Liu, W Hsu, S. Chen, and Y. Ma, “Analyzing the Subjective Interestingness of Association Rules,” IEEE Intelligent Systems, Vol.15, No.5, pp. 47-55, May
2000.

[24] J. S. Park, M. S. Chen, and P. S. Yu, “An Effective Hash Based Algorithm for Mining Association Rules,” Proc. ACM Special Interest Group on Management
of Data (SIGMOD), pp. 175-186, May 1995.

[25] R. Rastogi, and K. Shim, “Mining Optimized Association Rules with Categorical and Numeric Attributes,” IEEE Trans. on Knowledge and Data Eng., Vol.14, No.1, pp. 29-50, January/February 2002.

[26] Y. Ruggieri, “Efficient C4.5,” IEEE Trans. on Knowledge and Data Eng., Vol.14, No.2, pp. 438-444, March/April 2002.

[27] Y. Saygin, V. S. VeryKios, and A. K. Elmagarmid, “Privacy Preserving Association Rules Mining,” IEEE Proceedings of the 12th Int’l Wrkshp on Research Issues in Data Engineering: Engineering e-Commerce/ e-Business
Systems (RIDE’02), pp. 151-158, 2002.

[28] J. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A Scalable Parallel Classifier for Data Mining,” In Proc. 1996 Int. Conf. Very Large Data Bases, pp. 544-555, September 1996.

[29] S. M. Tseng, “Efficient Mining of Categorized Association Rules in Large Database,” IEEEE International Conference on System, Man, and Cybernetics,
pp. 3606-3610, 2000.

[30] S.Y. Wur and Y. Leu, “An Effective Boolean Algorithm for Mining Association Rule in Large Database,” Proc. 6th Data Systems for Advanced Applications Conf., pp.179-186, April 19-22, 1999.

[31] D. L. Yang, C. T. Pan and Y. C. Chung, “An Efficient Hash-Bashed Method for Discovering the Maximal Frequent Set,” Computer Software and Applications Conference, pp.511-516 Oct. 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top