[1] 呂宗耀、張獻祥,投資者的修練,時報文化出版,2005年1月31日。
[2] 呂宗耀,聚焦,今周刊出版社,2005年1月。
[3] 巴菲特,勝券在握,遠流出版社。
[4] 阮士峰,資料探勘在股市序列型樣的應用, 國立東華大學資訊工程研究所在職專班論文,民國九十三年七月。[5] 林成、楊馥聰,K棒兵法,建安出版社,pp.53, 2002。
[6] 簡辰丞,結合MACD與類神經模糊技術之股票預測模型—以臺灣金融股為例,靜宜大學,碩士論文。[7] 方旭(民國89 年) ,選股致富50式,星定石文化。
[8] 張政一,類神經網路於有價證券預測股價及漲跌之研
究,私立中國文化大學商學院國際企業管理研究所碩士論文,民國89 年。
[9] 陳之大、曹曉東、賀學會、劉藝(民國88 年) ,股票家超級聖典,台灣實業文化。
[10] 江玥慧,時間性資料庫中相似曲線的搜尋— 以台灣股價資料庫為例,國立台灣大學資訊管理研究所碩士論文,1998。[11] 曾守正, “從想像中找出事實:如何使 Data Mining 成為貴公司的一部份?” IBM 與國立交通大學合作之DB2 資訊月刊, 第17期, Nov. 1997.
[12] C. C. Aggarwal, and P. S. Yu, “A New Approach to Online Generation of Association Rules,” IEEE Trans. of Knowledge and Data Eng., Vol. 13, NO 4, pp.527-540, July/August 2001.
[13] R. Agrawal, T. Imelinski and A. Swami, “Mining Association Rules between Set of Itemset in Large Database,” Proc. ACM Special Interest Group on Management of Data (SIGMOD), pp. 207-216, May 1993.
[14] R. Agrawal, and R. Srikant, “Fast Algorithm for Mining Association Rules in Large Databases, ”Proc. 20th Very Large Database Conf., pp.478-499, ept.,1994.
[15] M. J. A. Berry and G. S. Linoff, Data Mining Techniques for Marketing, Sales,
and Customer Support, John Wiley & Sons. Inc., 1997.
[16] R. Brin, R. Motwani, J. Ullman and S. Tsur, ”Dynamic Itemset Counting and Implication Rules for Market Basket Data,” Proc. ACM Special Interest Group
on Management of Data (SIGMOD), Vol. 26(2), pp.255-264, May 1997.
[17] M. S. Chen, J. Han. and P.S. Yu, “Data Mining: An Overview from a Database Perspective,” IEEE Trans. on Knowledge and Data Eng., Vol. 8, No. 6, pp.
866-882, Dec. 1996.
[18] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman, and C. Yang, “Finding Interesting Associations without Support Pruning,” IEEE Trans. on Knowledge and Data Eng., Vol 13, No.1, pp. 64-78, January/February2001.
[19] J. Han and Y. Fu, “Mining Multiple-level Association Rules in Large Databases,” IEEE Trans. on Knowledge and Data Eng., Vol.11. No.5, pp. 798-805, 1999.
[20] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan
Kaufmann Inc. 2001.
[21] IBM Quest data Mining Project, “Quest Synthetic Date Generation Code,” “http://www.almaden.ibm.com/cs/quest/ syndata.html”, 1996.
[22] B. Liu, W. Hsu and Y. Ma, “Mining Association Rules with Multiple Minimum Supports”, Proc. 5th ACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining, pp.337-341, May 1999.
[23] B. Liu, W Hsu, S. Chen, and Y. Ma, “Analyzing the Subjective Interestingness of Association Rules,” IEEE Intelligent Systems, Vol.15, No.5, pp. 47-55, May
2000.
[24] J. S. Park, M. S. Chen, and P. S. Yu, “An Effective Hash Based Algorithm for Mining Association Rules,” Proc. ACM Special Interest Group on Management
of Data (SIGMOD), pp. 175-186, May 1995.
[25] R. Rastogi, and K. Shim, “Mining Optimized Association Rules with Categorical and Numeric Attributes,” IEEE Trans. on Knowledge and Data Eng., Vol.14, No.1, pp. 29-50, January/February 2002.
[26] Y. Ruggieri, “Efficient C4.5,” IEEE Trans. on Knowledge and Data Eng., Vol.14, No.2, pp. 438-444, March/April 2002.
[27] Y. Saygin, V. S. VeryKios, and A. K. Elmagarmid, “Privacy Preserving Association Rules Mining,” IEEE Proceedings of the 12th Int’l Wrkshp on Research Issues in Data Engineering: Engineering e-Commerce/ e-Business
Systems (RIDE’02), pp. 151-158, 2002.
[28] J. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A Scalable Parallel Classifier for Data Mining,” In Proc. 1996 Int. Conf. Very Large Data Bases, pp. 544-555, September 1996.
[29] S. M. Tseng, “Efficient Mining of Categorized Association Rules in Large Database,” IEEEE International Conference on System, Man, and Cybernetics,
pp. 3606-3610, 2000.
[30] S.Y. Wur and Y. Leu, “An Effective Boolean Algorithm for Mining Association Rule in Large Database,” Proc. 6th Data Systems for Advanced Applications Conf., pp.179-186, April 19-22, 1999.
[31] D. L. Yang, C. T. Pan and Y. C. Chung, “An Efficient Hash-Bashed Method for Discovering the Maximal Frequent Set,” Computer Software and Applications Conference, pp.511-516 Oct. 2001.