跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡依純
研究生(外文):Yi-chun Tsai
論文名稱:建構關聯度指標系統應用於選股決策
論文名稱(外文):Constructing the Index System of Association to Stock Investment Decision
指導教授:鄭元振鄭元振引用關係
指導教授(外文):Yuan-chen Cheng
學位類別:碩士
校院名稱:立德管理學院
系所名稱:應用資訊研究所
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:74
中文關鍵詞:條件機率決策支援資料倉儲聯合機率關聯度指標系統
外文關鍵詞:Data warehouseIndex system of associationJoint probabilityConditional probabilityDecision support
相關次數:
  • 被引用被引用:1
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:1
本研究以關聯度指標系統(Index System of Association )來支援選股決策,並以聯合機率(Joint Probability)及條件機率(Conditional Probability)兩因素來做為評估上漲關聯度之依據,同時將上漲關聯度區分為:極高相關、高相關、中相關、弱相關等四級。本研究所建構之關聯度指標決策支援系統(Decision Support System, DSS),提供分析者任意選擇標的股票並用於預測個股之間的相關程度分析,和個股與多股之間的多元相關程度分析,在資料庫設計方面以資料倉儲(Data Warehouse)做為的儲存架構,在實務應用上不僅靈活而且有效率。
This research constructs an index system of association, which is based on the joint probability and conditional probability factors, to support the stock investment decision. This research divides the relational degree of the association index to extremely high, high, medium and weak. By improving the data warehouse structure, we can make the decision support system more flexible and efficient.
中文摘要......................I
ABSTRACT......................II
誌 謝......................III
目 錄......................IV
表 目 錄......................VI
圖 目 錄......................VIII
第一章 緒論......................1
1.1 研究動機與背景......................1
1.2 研究目的......................2
1.3 研究範圍與分析對象......................2
1.4 研究限制......................3
1.5 本文架構......................3
第二章 理論基礎與文獻回顧......................5
2.1 相關文獻探討......................5
2.1.1 資料探勘......................5
2.1.2 關聯規則......................7
2.1.3 序列關聯規則......................9
2.1.4 多維度資料關聯規則......................9
2.2 理論基礎......................10
2.2.1 聯合機率......................11
2.2.2 條件機率......................12
第三章 理論方法......................13
3.1關聯度因子......................13
3.2 關聯度指標......................13
第四章 案例分析......................17
4.1 流程分析......................17
4.2 研究樣本......................18
4.3 標的股票與關聯股票之選擇......................22
4.4 求解X與Y之機率分配......................26
4.5 計算關聯度指標......................33
4.6 計算二元關聯度指標......................35
4.7 計算三元關聯度指標......................44
4.8 關聯度指標驗証......................52
第五章 與金融產業之比對分析......................55
5.1 金融類股之關聯股票......................55
5.2 與金融類股之X與Y機率分配之求解......................57
5.3 計算與金融類股之關聯度指標......................63
第六章 負關聯度指標......................66
6.1 負關聯求解......................66
6.2 計算負關聯度指標......................67
第七章 結論......................71
7.1 結語......................71
7.2 未來展望......................72
參考文獻......................73
何維翰,具多重支持度權重式關聯規則於大型資料庫挖掘之研究,碩士論文,立德管理學院應用資訊研究所,台南,第11-13頁,2003。

林惠玲、陳正倉,應用統計學,雙葉書廊有限公司,台北,第74-15頁和第117-143頁,1999。

Agrawal R., T. Imielinski and A. Swami. Mining association rules between sets of items in large databases. In Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’93), pages 207-216, Washington, DC, May 1993.

Agrawal R. and R. Srikant. Fast algorithms for mining association rules. In Proc. 1994 Int. Conf. Very Large Data Bases (VLDB,94), pages 487-499, Santiago, Chile, Sept. 1994.

Agrawal R. and R. Srikant. Mining sequential patterns. In Proc. 1995 Int. Conf. Data Engineering (ICDE’95), pages 3-14, Taipei, Taiwan, Mar. 1995.

Jiawci Han and Micheline Kamber. Datat Mining, Concepts and Techniques, pages 1-33, 2001.
Koperski K. and J. Han. Discovery of spatial association rules in geographic information databases. In Proc. 4th Int. Symp. Large Spatial Databases (SSD’95), pages 47-66, Portland, ME, Aug. 1995.

Lu H., J. Han and L. Feng. Stock movement and n-dimensional inter-transaction association rules. In Proc. 1998 SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD’98), pages 12:1-12:7, Seattle, WA, June 1998.

Mannila H., H. Toivonen and A. I. Verkamo. Efficient algorithms for discovering association rules. In Proc. AAAI’94 Workshop Knowledge Discovery in Databases (KDD’94), pages 181-192,
Seattle, WA, July 1994.

Mannila H., H. Toivonen and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1:259-289, 1997.

Park J. S., M. S. Chen and P. S. Yu. An effective hash-based algorithm for mining association rules. In Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’95), pages 175-186, San Jose, CA, May 1995a.

Park J. S., M. S. Chen and P. S. Yu. Efficient parallel mining for association rules. In Proc. 4th Int. Conf. Information and Knowledge Management, pages 31-36, Baltimore, MD, Nov. 1995b.

Ramaswamy S., S. Mahajan and A. Silberschatz. On the discovery of interesting patterns in association rules. In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98), pages 368-379, New York, Aug. 1998.

Savasere A., E. Omiecinski and S. Navathe. Mining for strong negative associations in a large database of customer transactions. In Proc. 1998 Int. Conf. Data Engineering (ICDE’98), pages 494-502, Orlando, FL, Feb. 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊