|
References [1] Battocchio, P., Menoncin, F., 2004. Optimal portfolio strategies with sto- chastic wage income and in‡ation: the case of a de…ned contribution pen- sion plan. Working Paper CeRP, No. 19-02. Torino, Italy. [2] Battocchio, P., Menoncin, F., 2004. Optimal Pension management in a stochastic framework. Insurance: Mathematics and Economics 34, 79-95. [3] Black, D., Cairns, A. J. G., Dowd, K., 2000. Optimal dynamic asset allo- cation for de…ned-contribution plans. The Pension Institute, London, Dis- cussion Paper PI 2003. [4] Boulier, J. F., Huang, S. J., Taillard, G., 2001. Optimal management under stochastic interest. Insurance: Mathematics and Economics 28, 173-189. [5] Boyle, P. and Yang, H., 1997. Asset allocation with time variation in ex- pected returns, Insurance: Mathematics and Economics, 21, 201-218. [6] Brennan, M. J., Schwartz, E. S., Lagnado R., 1997. Strategic asset alloca- tion, Journal of Economics, Dynamics and Control, 21, 1377-1403. [7] Brennan, M. J., Schwartz E. S., 1982. An equilibrium model of bond pric- ing and a test of market e¢ ciency, Journal of Financial and Quantitative Analysis, 17, 301-329. [8] Brennan, M. J. and Schwartz, E. S. Schwartz, 1998. The use of treasury bill futures in strategic asset allocation programs. In Worldwide Asset and Liability Modeling. (J.M.Mulvey andW.T. Ziemba, Eds.) Cambridge, Eng- land: Cambridge University Press, 205-230. [9] Brimson, G. P., Hood, L. R., & Beelower, G. L. (1986). Determinants of portfolio performance. Financial Analysts Journal, 42, 39-44. [10] Brimson, G. P., et.al., (1990). Determinants of portfolio performance II: An update. Financial Analysts Journal, 47,40-48. [11] Cairns, A. J. G., 2000. Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time, ASTIN Bulletin, 30, 19-55. [12] Campbell, J. Y., Cocco, J., Gomes, F., Maenhout P. 2001. Investing re- tirement wealth: a life cycle model, in Risk Aspects of Investment-Based Social Security Reform, Edited by Campbell, J. Y., Feldstein, M., editors, Chicago University Press, Chicago. [13] Campbell, J. Y., Viceira L. M., 1999. Consumption and portfolio decisions when expected returns are time varying, Quarterly Journal of Economics, 114, 433-495. 1 [14] Campbell, J. Y., Viceira L. M., 2001. Who should buy long-term bonds, American Economic Review, 91, 99-127. [15] Campbell, J. Y., Viceira L. M., 2002. Strategic asset allocation - portfolio choice for long-term investors, Oxford University Press. [16] Chang, S. C., 1999. Optimal pension funding through dynamic simulations: the case of Taiwan public employees retirement system, Insurance: Math- ematics and Economics, 24, 187-199. [17] Chang, S. C., 2000. Realistic pension funding: a stochastic approach, Jour- nal of Actuarial Practice, 8, 5-42. [18] Chang, S. C., Tsai, C. H., Tien, C. J., Tu, C. Y. , 2002. Dynamic funding and investment strategy for de…ned bene…t pension schemes: model incor- porating asset-liability matching criterion, Journal of Actuarial Practice, 10, 131-155. [19] Chang, S. C., Tzeng, L. Y., Miao, C. Y., 2003. Pension funding incorporat- ing downside risks, Insurance: Mathematics and Economics, 32, 217-228. [20] Cox, J. C., Huang, C. F., 1991. A variational problem arising in …nancial economics. Journal of Mathematical Economics 20, 465-487. [21] Deelstra, G., Grasselli, M., Koehl, P. F., 2003. Optimal investment strate- gies in the presence of a minimum guarantee. Insurance: Mathematics and Economics 33, 189-207. [22] Du¢ e, D., 1996. Dynamic Asset Pricing Theory. Princeton University Press, Princeton. [23] Fisher I., 1930. The Theory of Interest. New York: A. M. Kelly. [24] Haberman, S., Sung, J. H., 1994. Dynamic approaches to pension funding, Insurance: Mathematics and Economics, 15, 151-162. [25] Haberman, S., Vigna, E., 2001. Optimal investment strategy for de…ned contribution pension schemes. Insurance: Mathematics and Economics 28, 233-262. [26] Heaton, J., Lucas, D. 1997. Market frictions, savings behavior and portfolio choice, Macroeconomic Dynamics, 1, 76-101. [27] Huang, H., Imrohoroglu, S., Sargent, T. J. 1997. Two computations to fund social security, Macroeconomic Dynamics,1(1), 7-44. [28] Imrohoroglu, A., Imrohoroglu, S., Joines, D. 1995. A life cycle analysis of social security, Economic Theory, 6, 83-114. [29] Imrohoroglu, A., Imrohoroglu, S., Joines, D. 1999a. A dynamic stochastic general equilibrium analysis of social security, in Kehoe, T., Prescott, E., eds., The Discipline of Applied General Equilibrium, Springer-Verlag. 2 [30] Josa-Fombellida, R., Rinc-Zapatero, J. P., 2001. Minimization of risks in pension funding by means of contributions and portfolio selection, Insur- ance: Mathematics and Economics, 29, 35-45. [31] Karatzas, I., Lehoczky, J. P., Sethi, S. P., Shreve, S. E., 1986. Explicit solutions of a 30 general consumption investment problem, Mathematics of Operations Research, 11, 261-294. [32] Koo, H. K. 1998. Consumption and portfolio selection with labor income: a continuous time approach, Mathematical Finance, 8, 49-65. [33] Karatzas, I., Shreve, S. 1991. Brownian Motion and Stochastic Calculus. Springer, New York. [34] Kim, T., Omberg, E., 1996. Dynamic nonmyopic portfolio behavior, Review of Financial Studies 9, 141-161. [35] Lioui, A., Poncet, P., 2001. On optimal portfolio choice under stochastic interest rates. Journal of Economic Dynamic and Control 25, 1841-1865. [36] Madsen, J. B. 2002. The share market boom and the recent disin‡ation in the OECD countries: the tax-e¤ects, the in‡ation-illusion, and the risk- aversion hypotheses reconsidered. Quarterly Review of Economics and Fi- nance, 42, 115-141. [37] Markowitz, H. M., 1952. Portfolio selection. Journal of Finance 7(1), 77-91. [38] Markus, R., William, T., Z., 2004. Intertemporal surplus management. Journal of Economic Dynamics and Control 28, 975-990. [39] Menoncin, F., 2002. Optimal portfolio and background risk: an exact and an approximated solution, Insurance: Mathematics and Economics, 31, 249-265. [40] Merton, R. C. 1969. Lifetime portfolio selection under uncertainty: The continuous time case. Review of Economics and Statistics 51, 247-257. [41] Merton, R. C. 1971. Optimum consumption and portfolio rules in a con- tinuous time model. Journal of Economic Theory 3, 373-413. [42] Merton, R. C. 1990. Continuous-time Finance. Blackwell, Cambridge, MA. [43] Modigliani, F., John, R. A. 1979. In‡ation, rational valuation and the mar- ket. Financial Analysts Journal, 24-44. [44] O’Brien, T., 1986. A stochastic-dynamic approach to pension funding, In- surance: Mathematics and Economics, 5, 141-146. [45] O’Brien, T., 1987. A two-parameter family of pension contribution func- tions and stochastic optimization, Insurance: Mathematics and Economics, 6, 129-134. 3 [46] Ritter, J. R., Warr, R. S. 2002. The decline of in‡ation and the bull market of 1982 to 1999. Journal of Financial and Quantitative Economics, 37, 29- 61. [47] Runggaldier, W. J., 1998. Concept and methods for discrete and continuous time control under uncertainty, Insurance: Mathematics and Economics, 22, 25-39. [48] Rutkowski. M., 1999. Self-…nancing trading strategies for sliding, rolling- horizon, and consol bonds. Mathematical Finance 9, no. 4, 361-365. [49] Samuelson, P., 1969. Lifetime portfolio selection by dynamic stochastic programming, Review of Economics and Statistics, 51, 239-246. [50] Schäl, M., 1998. On piecewise deterministic Markov control processes: con- trol of jumps and of risk processes in insurance, Insurance: Mathematics and Economics, 22, 75-91. [51] Sharpe, W. F., 1991. Capital asset prices with and without negative hold- ings, Journal of Finance, 64, 489-509. [52] Sorensen, C., 1999. Dynamic asset allocation and …xed income manage- ment, Journal of Financial and Quantitative Analysis, 34, 513-531. [53] Vasicek, O. E. 1997. An equilibrium characterization of the term structure. Journal of Financial Economics 5, 177-188. [54] Viceira L. M., 2001. Optimal portfolio choice for long-horizon investors with non-tradable labor income, Journal of Finance, 56, 433-470. [55] Wachter, J. A., 2002. Portfolio and consumption decisions under mean- reverting returns: an exact solution for complete markets, Journal of Fi- nancial and Quantitative Analysis, 37, 63-91. 4
|