跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:b669:e553:ec7:b9d5) 您好!臺灣時間:2024/12/14 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃雅文
研究生(外文):Hwang Ya-wen
論文名稱:薪資所得與通貨膨脹不確定性於確定提撥退休金計畫
論文名稱(外文):Hedging Labor Income Inflation Uncertainties through Capital Market in Defined Contribution Pension Schemes
指導教授:張士傑張士傑引用關係
學位類別:碩士
校院名稱:國立政治大學
系所名稱:風險管理與保險學系
學門:商業及管理學門
學類:風險管理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:28
中文關鍵詞:確定提撥薪資的不確定性通貨膨脹隨機控制動態規劃
外文關鍵詞:defined contributionsalary uncertaintyinflationstochastic controldynamic programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:6
本文於確定提撥退休金制度下,探討基金經理人如何決定最適資產策略規避薪資所得及通貨膨脹之不確定風險,求得期末財富效用期望值極大化。本研究首先擴展Battocchio與Menoncin (2004)所建構之資產模型,我們不僅探討來自市場之風險,同時考量薪資所得、通貨膨脹與費用率之不確定性,研究其對最適資產配置行為的影響,建構隨機控制模型,以動態規劃方法求解Hamiltonian方程式,研究結果顯示,我們可利用五項共同基金分離定理來描述投資人之最適投資決策:短期市場基金、狀態變數避險基金、薪資所得避險基金、通貨膨脹避險基金與現金部位。數值結果顯示,股票持有部位中通貨膨脹避險基金佔有最大的成份,債券持有部位中通貨膨脹避險基金與狀態變數避險基金佔有最大的成份。
關鍵字:確定提撥、薪資的不確定性、通貨膨脹、隨機控制、動態規劃
In this study, we investigate the portfolio selection problem in order to hedge the labor income and inflation uncertainties for defined contribution (DC) pension schemes. First, we extend the previous work of Battocchio and Menoncin (2004) that allowed the state variables (i.e., the risks from the financial market) and a set of stochastic processes to describe the inflation, labor income and expense uncertainties. A five-fund separation theorem is derived to characterize the optimal investment strategy for DC pension plans to hedge the labor income and the inflation risks. Second, by solving the Hamiltonian equation in the three-asset framework, we show that the optimal portfolio consists of five components: the myopic market portfolio, the hedge portfolio for the state variables, the hedge portfolio for the inflation risk, the hedge portfolio for the labor income uncertainty and the riskless asset. Then we explicitly solve the optimal portfolio problem. Finally, the numerical results indicate that the inflation hedge portfolio comprises the overwhelming proportion of stock holdings in the optimal portfolios. In addition, the inflation hedge portfolio and the state variable hedge portfolio constitute the overwhelming proportions of bond holdings.
Keywords: defined contribution; salary uncertainty; inflation; stochastic control; dynamic programming.
Contents
1. Introduction………………………………………………………………………1
1.1 The retirement system………………………………………………………3
1.2 The asset allocation problem………………………………………………..4
1.3 The development of the multi-period problems…………………………….4
1.4 Background risks……………………………………………………………4
1.5 The main approach in this article……………………………………………7
2. Proposed Model…………………………………………………………………...9
2.1 Financial market………..…………………………………………………....9
2.2 Labor income process…….…………….…………………………………..12
2.3 Inflation rate……………………..…….………………………..……….…12
2.4 The fund wealth…………………………………………………………….13
3. Asset Allocation Problem………………………………………………………..14
3.1 The stochastic optimal control……………………………………………..14
3.2 An exact solution…………………………………………………………..16
3.3 Second component of the optimal portfolio……………………………….17
4. Numerical Illustration…………………………………………………………...19
5. Conclusion………………………………………………………………………21
6. Appendix A ……………….…………………………………………………..23
7. Appendix B……………………………………………………………………...24
Reference……………………………………………………………………………25
References
[1] Battocchio, P., Menoncin, F., 2004. Optimal portfolio strategies with sto-
chastic wage income and in‡ation: the case of a de…ned contribution pen-
sion plan. Working Paper CeRP, No. 19-02. Torino, Italy.
[2] Battocchio, P., Menoncin, F., 2004. Optimal Pension management in a
stochastic framework. Insurance: Mathematics and Economics 34, 79-95.
[3] Black, D., Cairns, A. J. G., Dowd, K., 2000. Optimal dynamic asset allo-
cation for de…ned-contribution plans. The Pension Institute, London, Dis-
cussion Paper PI 2003.
[4] Boulier, J. F., Huang, S. J., Taillard, G., 2001. Optimal management under
stochastic interest. Insurance: Mathematics and Economics 28, 173-189.
[5] Boyle, P. and Yang, H., 1997. Asset allocation with time variation in ex-
pected returns, Insurance: Mathematics and Economics, 21, 201-218.
[6] Brennan, M. J., Schwartz, E. S., Lagnado R., 1997. Strategic asset alloca-
tion, Journal of Economics, Dynamics and Control, 21, 1377-1403.
[7] Brennan, M. J., Schwartz E. S., 1982. An equilibrium model of bond pric-
ing and a test of market e¢ ciency, Journal of Financial and Quantitative
Analysis, 17, 301-329.
[8] Brennan, M. J. and Schwartz, E. S. Schwartz, 1998. The use of treasury
bill futures in strategic asset allocation programs. In Worldwide Asset and
Liability Modeling. (J.M.Mulvey andW.T. Ziemba, Eds.) Cambridge, Eng-
land: Cambridge University Press, 205-230.
[9] Brimson, G. P., Hood, L. R., & Beelower, G. L. (1986). Determinants of
portfolio performance. Financial Analysts Journal, 42, 39-44.
[10] Brimson, G. P., et.al., (1990). Determinants of portfolio performance II:
An update. Financial Analysts Journal, 47,40-48.
[11] Cairns, A. J. G., 2000. Some notes on the dynamics and optimal control
of stochastic pension fund models in continuous time, ASTIN Bulletin, 30,
19-55.
[12] Campbell, J. Y., Cocco, J., Gomes, F., Maenhout P. 2001. Investing re-
tirement wealth: a life cycle model, in Risk Aspects of Investment-Based
Social Security Reform, Edited by Campbell, J. Y., Feldstein, M., editors,
Chicago University Press, Chicago.
[13] Campbell, J. Y., Viceira L. M., 1999. Consumption and portfolio decisions
when expected returns are time varying, Quarterly Journal of Economics,
114, 433-495.
1
[14] Campbell, J. Y., Viceira L. M., 2001. Who should buy long-term bonds,
American Economic Review, 91, 99-127.
[15] Campbell, J. Y., Viceira L. M., 2002. Strategic asset allocation - portfolio
choice for long-term investors, Oxford University Press.
[16] Chang, S. C., 1999. Optimal pension funding through dynamic simulations:
the case of Taiwan public employees retirement system, Insurance: Math-
ematics and Economics, 24, 187-199.
[17] Chang, S. C., 2000. Realistic pension funding: a stochastic approach, Jour-
nal of Actuarial Practice, 8, 5-42.
[18] Chang, S. C., Tsai, C. H., Tien, C. J., Tu, C. Y. , 2002. Dynamic funding
and investment strategy for de…ned bene…t pension schemes: model incor-
porating asset-liability matching criterion, Journal of Actuarial Practice,
10, 131-155.
[19] Chang, S. C., Tzeng, L. Y., Miao, C. Y., 2003. Pension funding incorporat-
ing downside risks, Insurance: Mathematics and Economics, 32, 217-228.
[20] Cox, J. C., Huang, C. F., 1991. A variational problem arising in …nancial
economics. Journal of Mathematical Economics 20, 465-487.
[21] Deelstra, G., Grasselli, M., Koehl, P. F., 2003. Optimal investment strate-
gies in the presence of a minimum guarantee. Insurance: Mathematics and
Economics 33, 189-207.
[22] Du¢ e, D., 1996. Dynamic Asset Pricing Theory. Princeton University
Press, Princeton.
[23] Fisher I., 1930. The Theory of Interest. New York: A. M. Kelly.
[24] Haberman, S., Sung, J. H., 1994. Dynamic approaches to pension funding,
Insurance: Mathematics and Economics, 15, 151-162.
[25] Haberman, S., Vigna, E., 2001. Optimal investment strategy for de…ned
contribution pension schemes. Insurance: Mathematics and Economics 28,
233-262.
[26] Heaton, J., Lucas, D. 1997. Market frictions, savings behavior and portfolio
choice, Macroeconomic Dynamics, 1, 76-101.
[27] Huang, H., Imrohoroglu, S., Sargent, T. J. 1997. Two computations to fund
social security, Macroeconomic Dynamics,1(1), 7-44.
[28] Imrohoroglu, A., Imrohoroglu, S., Joines, D. 1995. A life cycle analysis of
social security, Economic Theory, 6, 83-114.
[29] Imrohoroglu, A., Imrohoroglu, S., Joines, D. 1999a. A dynamic stochastic
general equilibrium analysis of social security, in Kehoe, T., Prescott, E.,
eds., The Discipline of Applied General Equilibrium, Springer-Verlag.
2
[30] Josa-Fombellida, R., Rinc-Zapatero, J. P., 2001. Minimization of risks in
pension funding by means of contributions and portfolio selection, Insur-
ance: Mathematics and Economics, 29, 35-45.
[31] Karatzas, I., Lehoczky, J. P., Sethi, S. P., Shreve, S. E., 1986. Explicit
solutions of a 30 general consumption investment problem, Mathematics of
Operations Research, 11, 261-294.
[32] Koo, H. K. 1998. Consumption and portfolio selection with labor income:
a continuous time approach, Mathematical Finance, 8, 49-65.
[33] Karatzas, I., Shreve, S. 1991. Brownian Motion and Stochastic Calculus.
Springer, New York.
[34] Kim, T., Omberg, E., 1996. Dynamic nonmyopic portfolio behavior, Review
of Financial Studies 9, 141-161.
[35] Lioui, A., Poncet, P., 2001. On optimal portfolio choice under stochastic
interest rates. Journal of Economic Dynamic and Control 25, 1841-1865.
[36] Madsen, J. B. 2002. The share market boom and the recent disin‡ation
in the OECD countries: the tax-e¤ects, the in‡ation-illusion, and the risk-
aversion hypotheses reconsidered. Quarterly Review of Economics and Fi-
nance, 42, 115-141.
[37] Markowitz, H. M., 1952. Portfolio selection. Journal of Finance 7(1), 77-91.
[38] Markus, R., William, T., Z., 2004. Intertemporal surplus management.
Journal of Economic Dynamics and Control 28, 975-990.
[39] Menoncin, F., 2002. Optimal portfolio and background risk: an exact and
an approximated solution, Insurance: Mathematics and Economics, 31,
249-265.
[40] Merton, R. C. 1969. Lifetime portfolio selection under uncertainty: The
continuous time case. Review of Economics and Statistics 51, 247-257.
[41] Merton, R. C. 1971. Optimum consumption and portfolio rules in a con-
tinuous time model. Journal of Economic Theory 3, 373-413.
[42] Merton, R. C. 1990. Continuous-time Finance. Blackwell, Cambridge, MA.
[43] Modigliani, F., John, R. A. 1979. In‡ation, rational valuation and the mar-
ket. Financial Analysts Journal, 24-44.
[44] O’Brien, T., 1986. A stochastic-dynamic approach to pension funding, In-
surance: Mathematics and Economics, 5, 141-146.
[45] O’Brien, T., 1987. A two-parameter family of pension contribution func-
tions and stochastic optimization, Insurance: Mathematics and Economics,
6, 129-134.
3
[46] Ritter, J. R., Warr, R. S. 2002. The decline of in‡ation and the bull market
of 1982 to 1999. Journal of Financial and Quantitative Economics, 37, 29-
61.
[47] Runggaldier, W. J., 1998. Concept and methods for discrete and continuous
time control under uncertainty, Insurance: Mathematics and Economics,
22, 25-39.
[48] Rutkowski. M., 1999. Self-…nancing trading strategies for sliding, rolling-
horizon, and consol bonds. Mathematical Finance 9, no. 4, 361-365.
[49] Samuelson, P., 1969. Lifetime portfolio selection by dynamic stochastic
programming, Review of Economics and Statistics, 51, 239-246.
[50] Schäl, M., 1998. On piecewise deterministic Markov control processes: con-
trol of jumps and of risk processes in insurance, Insurance: Mathematics
and Economics, 22, 75-91.
[51] Sharpe, W. F., 1991. Capital asset prices with and without negative hold-
ings, Journal of Finance, 64, 489-509.
[52] Sorensen, C., 1999. Dynamic asset allocation and …xed income manage-
ment, Journal of Financial and Quantitative Analysis, 34, 513-531.
[53] Vasicek, O. E. 1997. An equilibrium characterization of the term structure.
Journal of Financial Economics 5, 177-188.
[54] Viceira L. M., 2001. Optimal portfolio choice for long-horizon investors
with non-tradable labor income, Journal of Finance, 56, 433-470.
[55] Wachter, J. A., 2002. Portfolio and consumption decisions under mean-
reverting returns: an exact solution for complete markets, Journal of Fi-
nancial and Quantitative Analysis, 37, 63-91.
4
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳盈豪、王淑音、曾秋隆(2004a)白色三品種土番鴨在生長期異嗜性白血球與淋巴球比值之變化。東海學報(農學院)45:9-13。
2. 王勝德(2000)飼糧粗纖維與粗蛋白質含量對種母鵝產蛋性能與血液性狀之影響。畜產研究33(1):54-62。
3. 王勝德、吳國欽、葉力子(1999)飼糧粗纖維與粗蛋白質含量對種母鵝初產之影響。畜產研究32(4):343-352。
4. 陳盈豪、曾秋隆、王淑音、李鴻忠(2005)修喙對白羅曼生長鵝生長性狀、紅血球相與白血球相之影響。東海學報(農學院)46:17-24。
5. 黃振芳、李舜榮、林達德、陳保基、王政騰(1993)不同飼養環境對三品種土番鴨生長及屠體之影響。畜產研究26(3):203-211。
6. 許福星、洪國源、李國貞、徐阿里(1987)青割玉米不同成熟期青割產量及營養成分變化。中華農學會報 新139:44-45。
7. 盧金鎮、徐阿里(1989a)飼糧型態與加工方式對鵝生長性能及屠體性狀的影響。畜產研究2(1):9-19。
8. 甘子能 (1998)。我國有機農業之政策目標與發展策略,農政與農情,77。
9. 林傳琦 (2004)。日本有機農產品驗證制度簡介,農政與農情,140。
10. 徐村和 (1998)。模糊德菲層級分析法,模糊系統學刊,4(1),59-72。
11. 陳光華、江玉婷 (2000)。中文資訊檢索測試集之設計與製作,資訊傳播與圖書館學,3,61-80。
12. 黃璋如 (2003)。我國與歐美有機農產品驗證制度之比較,農政與農情,129,36-40。
13. 黃璋如 (2004)。先進國家有機農產品標章與標示之作法與啟示,農政與農情,139,75-80。
14. 董時叡 (2002)。從全球觀點探討台灣有機農業之發展,中華農學會報,3(4),311-324。
15. 劉紹翰 (2004)。供應鏈管理與品質衡量,品質工程技術應用專輯,機械工業雜誌,250,84-91。