跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇志強
研究生(外文):Su Chih-Chiang
論文名稱:混合礫石陡坡渠槽之非平衡篩選現象研究
論文名稱(外文):Nonequilibrium Sorting of Nonuniform Gravel in a Steep Channel
指導教授:盧昭堯盧昭堯引用關係
指導教授(外文):Lu-Jau-Yau
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:130
中文關鍵詞:陡坡渠槽混合礫石非平衡輸沙顆粒篩選類神經網路
外文關鍵詞:steep channelnon-uniform gravelnon-equilibrium sediment transportgrain-sortingartificial neural network
相關次數:
  • 被引用被引用:2
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
山區河川及台灣短峻湍流富饒粒徑寬廣之卵礫石,洪水時顆粒篩選現象時常發生。九二一大地震後山地蘊藏大量土石,且全球天候暖化後,颱風豪雨趨於超強度集中降雨,如2004年七二大水,導致台灣中部大甲溪河道過載淤積,影響國計民生。
本文利用碩士論文平衡輸沙資料,進行非平衡沖淤之床沙分離現象探討。以相同粒徑範圍、泥沙中徑而幾何標準偏差為2及1.5之兩組混合礫石;變化兩組坡度範圍為2%-4%與3%-5%;試驗過程採固定流量及加沙率,設計泥沙供給量為過載、弱載,共計8個非平衡沖淤全程試驗,各全程試驗另含4個分段試驗,總計完成40個陡坡非平衡試驗。
根據全程試驗結果,本文認為水流篩選機制,包括沿主流向重力篩選及垂直向隱蔽篩選。泥沙幾何標準偏差愈大且底床坡降愈陡之非平衡沖淤試驗,重力效應導致粗顆粒移動性逆轉和床沙細化影響水流強度等愈為顯著。過載淤積試驗,推移載及過載淤積層之泥沙中徑,沿主流向下游粗化;隨底床淤積而底床坡降趨陡,受重力效應影響之粒徑趨小,淤積層粒徑垂直向上趨於分層細化。
由分段試驗結果,本文驗證非平衡試驗具可重複性;且分段試驗之床沙糙率分析,可驗證水流重力及隱蔽篩選現象。此外,本文收集礫石之渠槽平衡試驗資料,利用類神經網路,建構陡坡礫石推移載之倒傳遞神經網路模式,已獲致良好驗證。
Mountain rivers such as those in the upland areas of Taiwan usually have gravel with wide gradations. The sorting phenomenon frequently occurs in the bed material during the floods.. After the ghastly 921 earthquake, the mountainous region contains a large quantity of loose sediment. In addition, with the advent of global warming, the torrential rain carried by typhoons tends to fall intensively within a specific area. For example, the heavy rainfall on July 2, 2004 caused the Da-Chia River in the central Taiwan to overload with gravel, and subsequently affected the national economy and the people’s livelihood enormously.
In this study, the selective transport phenomenon of the non-uniform gravel under the non-equilibrium condition was investigated according to the equilibrium condition data from the author’s Master’s thesis. With the geometric standard deviations of 2 and 1.5, the same size ranging from 2.36 to 38.1 mm, and the same median size of 7.5 mm, two kinds of particle size distributions were prepared by sieve analysis of the natural gravel. As a result, forty non-equilibrium tests (including the total runs and the subruns) were conducted under both the underloading and overloading conditions with a slope ranging from 2% to 5%.
According to the experimental results, the grain-sorting mechanism includes both the gravity sorting along the longitudinal direction and the vertical sorting by the hiding phenomenon. As the non-equilibrium experiments were carried out under the conditions of larger geometric standard deviation and steeper bed slope, phenomena such as the mobility reversal due to the gravity effect, and the flow intensity influenced by the fining of bed material, became more obvious. The downstream coarsening of the median size in both the bed load and the deposited layer occurred mainly due to gravity effect in aggrading laboratory deposits. In addition, the lower limit of the coarse grains affected by the gravity effect decreased with an increase of bed slope (mobility reversal), so the upward fining of the deposited material also occurred due to the hiding phenomenon.
The sorting phenomenon was verified by the analysis of the roughness of the aggrading deposits in the subruns. In addition, developed from the ANN (artificial neural network) model for predicting the bed load with non-uniform gravel in steep slopes in this study, the BPN (back-propagation network) scheme was also proved to be reasonably accurate with flume data collected under the equilibrium condition.
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章 緒論 1
1-1研究動機 1
1-2研究背景 2
1-3研究目的 3
1-4內文組織 4
第二章 前人研究 5
2-1平衡推移載運移 5
2-2陡坡礫石推移載渠槽試驗資料 15
2-3非平衡推移載運移 17
2-4床沙阻力 23
2-4-1糙率公式 24
2-4-2水槽邊壁阻力校正 27
第三章 類神經網路陡坡礫石推移載模式 28
3-1類神經網路簡介 28
3-2倒傳遞神經網路 30
3-3類神經網路模擬軟體 35
3-4陡坡混合礫石推移載模式(BPN) 35
第四章 非平衡沖淤渠槽試驗 41
4-1試驗儀器 41
4-1-1變量流循環水槽 41
4-1-2自動加沙裝置 43
4-1-3懸吊式秤重系統 45
4-2試驗方法 45
4-2-1試驗設計 45
(1)試驗目的 45
(2)試驗礫石級配 46
(3)試驗控制條件 46
(4)水力條件 46
(5)全程試驗與分段試驗 47
4-2-2試驗流程及方法 48
4-2-3淤積試驗分層篩分析 53
4-2-4試驗資料收集 53
4-3一維河床演變模式 55
第五章 非平衡試驗結果分析 62
5-1非平衡過載、弱載試驗成果表 62
5-2渠床沖淤速率及淤積到達時間 66
5-3淤積波速 71
5-4非平衡沖淤渠床剖面及最終底床坡降 73
5-5非平衡輸沙率、推移載粒徑變化及平衡到達時間 77
5-6陡坡混合礫石淤積篩選現象 82
5-6-1沿主流向下游粗化 82
5-6-2垂直向上分層細化 85
5-6-3淤積層分層篩分析 86
5-6-4混合粒徑水流篩選機制 87
5-7沖淤試驗重複性—全程及分段試驗比較 98
5-8非平衡過程床面糙率變化 101
5-8-1過載淤積過程 101
5-8-2弱載沖刷過程 102
5-9非平衡河床演變模擬 106
第六章 結論與建議 109
6-1結論 109
6-2建議 110
參考文獻 112
個人資料表 126
1.王筱雯,近床多顆粒三維躍移行為之研究,國立台灣大學土木工程學研究所碩士論文,2002年6月。
2.何智武,湍流渠槽沉滓運移特性之研究,國立台灣大學土木工程學研究所博士論文,1983年1月。
3.吳益裕,陡坡渠道混合礫石運移機制之研究,國立中興大學土木工程學系博士論文,1999年7月。
4.李振耀,非均勻礫石在超臨界流之運移研究,國立中興大學土木工程學研究所碩士論文,1993年11月。
5.李偉哲,湍流渠槽之輸沙量模式研究,國立台灣大學生物環境系統工程學研究所碩士論文,2002年7月。
6.惠遇甲、李義天、胡春宏、韓文亮、陳立、吉祖穩,高含沙水流紊動結構和非均勻沙運動規律的研究,武漢水利電力大學出版社,2000年5月。
7.張守陽,渠槽沉滓過載運移特性之研究,國立台灣大學土木工程學研究所博士論文,1990年6月。
8.張海燕,河川演變工程學,科學出版社,1990年7月。
9.陳耀彬,陡坡渠槽輸沙特性之試驗研究,國立中興大學水土保持學研究所碩士論文,1990年7月。
10.葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,2002年3月。
11.蔡長泰、沈學汶、王文江,台灣河川沉滓輸運分析研究(一)~(三),國立成功大學水利及海洋工程學系研究報告,經濟部水資源統一規劃委員會,1990年~1992年。
12.韓其為、何明民,泥沙起動規律及起動流速,科學出版社,1999年10月。
13.錢寧、張仁、周志德,河床演變學,科學出版社,1987年4月。
14.錢寧、萬兆惠,泥沙運動力學,科學出版社,1991年6月。
15.蘇志強,混合礫石渠槽輸沙率研究,國立中興大學土木工程學研究所碩士論文,1995年7月。
16.Ashida, K., and Michiue, M. (1972). “Basic study on hydraulic resistance and bedload transport in mobile bed flows.” Proc., JSCE. Tokyo, 206, 59-69 (in Japanese).
17.Aquirre Pe, J., and Fuentes, R. (1990). “Resistance to flow in steep rough streams.” J. Hydr. Engrg., ASCE, 125(3), 1374-1387.
18.Bagnold, R. A. (1980). “An empirical correlation of bed load transport rates in flumes and natural rivers.” Proc. R. Soc. London, Ser. A, 372, 453-473.
19.Bathurst, J. C., Graf, W. H., and Cao, H. H. (1987). “Bed load discharge equations for steep mountain Rrivers.” Sediment transport in gravel-bed rivers, C. R. Thorne, J. C. Bathurst and R. D. Hey eds., Wiley, New York, 453-476.
20.Belleudy, Ph., and SOGAEAH (2000). “Numerical simulation of sediment mixture deposition part 1: analysis of a flume experiment.” J. Hydr. Res., IAHR, 38(6), 417-425.
21.Belleudy, Ph., and SOGAEAH (2001). “Numerical simulation of sediment mixture deposition part 2: a sensitivity analysis.” J. Hydr. Res., IAHR, 39(1), 25-31.
22.Chang, S. Y., and Yen, C. L. (2002). “Simulation of bed-load dispersion process.” J. Hydr. Engrg., ASCE, 128(3), 331-342.
23.Cheng, N. S. (2002). “Exponential formula for bedload transport.” J. Hydr. Engrg., ASCE, 128(10), 942-946.
24.Cui, Y., Parker, G., and Paola, C. (1996). “Numerical simulation of aggradation and downstream fining.” J. Hydr. Res., IAHR, 34(2), 185-204.
25.Diplas, P. (1987). “Bedload transport in gravel-bed streams.” J. Hydr. Engrg., ASCE, 113(HY3), Proc., 277-292.
26.Einstein, H. A. (1942). “Method of calculating the hydraulic radius in a cross section with different roughness.” Appen. II of the paper “Formulas for the transportation of bed load.” Trans., ASCE, 107, 575-577.
27.Einstein, H. A. (1950). “The bedload function for sediment transport in open channel flows.” Tech. Bull. 1026, U.S. Dep. of Agric., Soil Conserv. Serv., Washington, D. C.
28.Einstein, H. A., and Chien, N. (1953). “Transport of sediment mixtures with large ranges of grain sizes.” MRD Sediment Sreies No. 2, U.S. Army Engineer Division, Missouri River, Crops of Engineers, Omaha.
29.Gessler, J. (1971). “Aggradation and degradation.” River Mechanics, H. W. Shen, ed., Colorado State Univ., Fort Collins, Colo., 8.1-8.24.
30.Gilbert, G. K. (1914). “The transportation of debris by running aater.” U. S. Geol. Survey, Prof. Paper No. 86, 259 p.
31.Graf, W. H. (1971). Hydraulics of sediment rtansport, McGraw-Hill, New York.
32.Graf, W. H. (1991). “Flow resistance over gravel bed: its consequence on initial sediment transport.” Fluvial hydraulics in mountain regions, G. di Silvio and A. Armanini, eds., Springer, Berlin.
33.Habersack, H., and Laronne, J. B. (2002). “Evaluation and inprovement of bed load discharge formulas based on Helley-Smith sampling in an alpine gravel bed river.” J. Hydr. Engrg., ASCE, 128(5), 484-499.
34.Hsu, S. M., and Holly, J. (1992). “Conceptual bed-load transport model and verification for sediment mixtures.” J. Hydr. Engrg., ASCE, 118(8), 1135-1152.
35.Jain, S. C. (1981). “River bed aggradation due to overloading.” J. Hydr. Div. ASCE, 106(1), 117-132.
36.Jaramillo, W. F., and Jain, S. C. (1984). “Aggradation and degradation of alluvial-channel beds.” J. Hydr. Engrg., ASCE, 110(8), 1072-1085.
37.Karim, F. (1998). “Bed material discharge prediction for nonuniform bed sediments.” J. Hydr. Engrg., ASCE, 124(6), 597-604.
38.Komura, S. and Simons, D. B. (1967). “River–bed degradation below dams.” J. Hydr. Div., ASCE, 93(HY4), Proc. Paper S33S, 1-14.
39.Komar, P. D. and Shih, S. M. (1987). “Equal mobility versus changing bedload grain sizes.” Dynamic of gravel bed rivers, P. Billi, R. D. Hey, C. R. Thorne, and P. Tacconi, eds., Wiley, New York, 73-106.
40.Kovacs, A., and Parker G. (1994). “A new vectorial bedload formulation and its application to the time evolution of straight river channels.” J. Fluid Mech., Cambridge, U.K., 267, 153-183.
41.Lau, Y. L., and Engel., P. (1999). “Inception of sediment transport on steep slopes.” J. Hydr. Engrg, ASCE, 125(5), 544-547.
42.Lu, J. Y., and Su, C. C. (2005). “Transport of gravels with different ranges of grain sizes in a steep channel.” Intl. J. Sed. Res., 20(2), 1-13.
43.Lu, J. Y., and Wu, I. Y. (1999). “Movement of graded sediment with different rangrs.” Intl. J. Sed. Res., 14(3), 9-22.
44.McEwan, I., Sørensen, M., Heald, J., Tait, S., Cunningham, G., Goring, D, and Willetts, B. (2004). “Probabilistic modeling of bed-load composition.” J. Hydr. Engrg., ASCE, 130(2), 129-139.
45.Meyer-Peter, E., and Müller, R. (1948). “Formulas for bed-load transport.”, Intl. Assoc. Hydraul. Res., 2nd Mtg., Stockholm, Sweden, Appendix 2, 39-64.
46.Milhous, R. T. (1973). “Sediment transport in a gravel-bottomed stream.” PhD dissertation, Oregon State Univ., Corvallis, Ore., U.S.A., 232 p.
47.Molinas, A., and Wu, B. (1998). “Effect of size gradation on transport of sediment mixtures.” J. Hydr. Engrg., ASCE, 124(8), 786-793.
48.Nagy, H. M., Watanabe, K., and Hirano, M. (2002). “Prediction of sediment load concentration in rivers using artificial neural network model.” J. Hydr. Engrg., ASCE, 128(6), 588-595.
49.Newton, C. T. (1951). “An experimental investigation of bed degradation in an open channel.” Trans. of Boston Soc. of Civ. Engrs., 28-60.
50.Parker, G., Kilngeman P. C., and McLean D. L. (1982). “Bedload and size distribution in paved gravel-bed streams.” J. Hydr. Engrg. Div., ASCE, 108(HY4), 544-561.
51.Paker, G. (1990). “Surface-based bedload transport relation for gravel rivers.” J. Hydr. Res., IAHR, 28(4), 417-436.
52.Paola, C., and Seal, R. (1995). “Grain size patchiness as a cause of selective deposition and downstream fining.” Water Resour. Res., 31(5), 1395-1407.
53.Papanicolaou, A. N., Bdour, A., and Wicklein, E. (2004). “One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams.” J. Hydr. Res., IAHR, 42(4), 357-375.
54.Rennie, C. D., Millar, R. G., and Church, M. A. (2002). “Measurement of bed load velocity using an acoustic Doppler current profiler.” J. Hydr. Engrg., ASCE, 128(3), 473-483.
55.Robert, H. N. (1990). Neurocomputing. Reading, MA: Addison-Wesley.
56.Schoklitsch, A. (1934). “Der Geschiebetrieb und die Geschiebefracht [Specific bed load transport and bed load flux.]” Wass. Wasserwirtschaft, 39(4), 1-7.
57.Seal, R., Paola, C., Parker, G., Southard, J. B., and Wilcock, P. R. (1997). “Experimrnts on downstream fining of gravel: I. narrow-channel runs.” J. Hydr. Engrg., ASCE, 123(10), 874-884.
58.Smart, G. M. (1984). “Sediment transport formula for steep channels.”, J. Hydr. Engrg., ASCE, 110(3), 267-276.
59.Smart, G. M., Duncan, M. J., and Walsh, J. M. (2002). “Relatively rough flow resistance equations.” J. Hydr. Engrg., ASCE, 128(6), 568-578.
60.Solari, L., and Parker, G. (2000). “The curious case of mobility reversal in sediment mixtures.” J. Hydr. Engrg., ASCE, 126(3), 185-197.
61.Soni, J. P., Garde, R. J., and Raju, K. G. R. (1980). “Aggradation in stream due to overloading.” J. Hydr. Div. ASCE, 106(1), 117-132.
62.Suzuki, K. (1993). “Grain sorting of sediment.” Res. and Particle of Hydraulic Engrg. in Japan, J. Hydroscience and Hydraulic Engrg., JSCE, SI-2 Fluvial Hydr., 57-77.
63.Suzuki, K., and Iwatsuki, A. (1992). “Vertical sorting and armoring of bed mixtures during river bed degradation.” Proc. Hydra. Engrg., JSCE, 36, 105-110, (in Japanese).
64.Sun, Z., and Donahue, J. (2000). “Statistically derived bed load formula for any fraction of nonuniform sediment.” J. Hydr. Engrg., ASCE, 126(2), 105-111.
65.Vanoni, V. A., and Brooks, N. H. (1957). “Laboratory studies of the roughness and suspended load of alluvial streams.” Report E-68, Sedimentation Lab., Calif. Inst. Tech., 121.
66.DeVries, M. (1973). “River-bed variation-Aggradation and degradation.” Publication No. 107, Delft Hydraulics Laboratory, Delft, Netherlands.
67.Wilcock, P. R. (1997). “The components of fractional transport rate.” Water Resour. Res., 33(1). 247-258.
68.Wilcock, P. R., and McArdell, B. W. (1997). “Partial transport of a sand/ gravel sediment.” Water Resour. Res., 33(1). 235-245.
69.Yen, C. L., Chang, S. Y., and Lee, H. Y. (1992). “Aggradation-degradation process in alluvial channels.” J. Hydr. Engrg., ASCE, 118(12), 1651-1669.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top