(3.236.214.19) 您好!臺灣時間:2021/05/10 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林大發
研究生(外文):Ta-Fa Lin
論文名稱:BurkholderiacepaciaCC-Al74分泌溶磷物質之分離及鑑定
論文名稱(外文):Separation and Identification of the P-solubilizing Exudates by Burkholderia cepacia CC-Al74
指導教授:楊秋忠楊秋忠引用關係
指導教授(外文):Chiu-Chung Toung
學位類別:博士
校院名稱:國立中興大學
系所名稱:土壤環境科學系
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:167
中文關鍵詞:Burkholderia cepacia溶磷微生物有機酸溶磷物質
外文關鍵詞:Burkholderia cepaciaPhosphate solubilizing bacteriaOrganic acidP-solubilizing metabolite.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:466
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:1
溶鈣磷細菌具有將難溶性磷酸三鈣轉變成為水溶性磷化合物的能力。多年來的研究顯示微生物所分泌的低分子量有機酸(分子量小於500 Da)是造成溶磷現象的主要原因,但對於分子量大於500 Da的溶磷物質則尚無人加以探討。因此本實驗的目的在於分離及鑑定溶鈣磷細菌分泌物中分子量大於500 Da之溶磷物質。本研究首先由本研究室保存的40株溶鈣磷菌中,篩選出生長速度快、溶磷能力高及溶磷現象穩定的實驗菌株Burkholderia cepacia CC-Al74,以透析膜區隔出該菌株分泌物中分子量大於500 Da的溶磷物質,經過有機溶劑萃取及再結晶處理後,使用高效液相層析儀(HPLC)分離並回收樣品中的溶磷物質,最後使用串聯質譜(ESI-MS/MS)及質譜分析軟體推測化學結構。本研究結果顯示挑選溶鈣磷細菌Burkholderia cepacia CC-Al74菌株的溶磷能力中約55.3 %是由分泌物分子量大於500 Da之物質所貢獻。CC-Al74菌株分泌物中分子量大於500 Da之濾液樣品經過萃取及再結晶處理後可以去除樣品的干擾物質,且證實分析物為極性物質。經HPLC分析的結果顯示使用Mightysil NH2 column及Aminex HPX-87H column配合折射率偵測器(RI detector)可以有效分離及純化樣品,回收的樣品經過溶磷能力分析後,證實樣品含有溶磷物質。HPLC管柱分離回收的溶磷物質經過串聯質譜(ESI-MS/MS)、質譜分析軟體「HighChem Mass Frontier」、化學分子描繪軟體「ISIS/Draw」及3D 分子模擬軟體「DS ViewerPro」分析後,本研究提出分子量為620 Da的溶磷物質之推測結構(proposed structure),命名為「Burkholderic acid」,該推測結構中含有四個羧酸基(-COOH),具有酸化及鉗合的功能,可以分解培養基中的難溶性磷酸三鈣,符合有機酸溶磷學說。本研究首次確認溶鈣磷細菌分泌物中具有分子量大於500 Da的溶磷物質,這是在微生物溶磷機制上的新發現,實驗結果將有助有機酸溶磷學說更趨完整。
Phosphate solubilizing bacteria (PSB) are being successfully applied as bio inoculants to increase phosphate uptake by plant and as an agent to remove excess phosphate from agriculture/aquatic systems. Many soil bacteria have proven efficient in enhancing plant growth and yield by solubilizing the inorganic phosphate present in the soil. Burkholderia cepacia CC-Al74, a bacterial strain isolated from the soil having a high ability for solubilizing tricalcium phosphate (TCP) was used in the present study as to understand the complex mechanism involved in the phosphate solubilization. A novel method was developed which, enables the collected filtrates to precisely assess extent of TCP solubilization by the strain CC-Al74. From the results of this study it was demonstrated that 55.3% of P-solubilization was contributed by the high-molecular weight metabolite of strain CC-Al74. The separation, purification and characterization of P-solubilizing metabolite from the strain CC-Al74 culture medium was performed using Mightysil NH2 and Aminex HPX-87H columns by high-performance liquid chromatography (HPLC). The proposed structure of P-solubilizing metabolite was analyzed by electrospray ionization (ESI) mass spectrometry and Mass Frontier software. The results showed that the molecular weight of P-solubilizing metabolite (M.W. > 500 Da) released by strain CC-Al74 was 620 Da. In the proposed structure of P-solubilizing metabolite (M.W. 620 Da) four carboxylic acid groups (-COOH) were evidenced. Therefore, by the process of acidification and chelation of P-solubilizing metabolite (M.W. 620 Da) TCP in culture medium was dissolved. The proposed structure of P-solubilizing metabolite (M.W. 620 Da) was named Burkholderic acid. In conclusion this study confirms that the high-molecular-weight (M.W. 620 Da) P-solubilizing metabolite is released by PSB, which was the major factor responsible for dissolution of TCP. This study also will give further scope for understanding and derive precise, but less understood, mechanism of P-solubilization by PSB.
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
表次 Ⅸ
圖次 Ⅹ
壹、 前言 1
貳、 前人研究 4
一、土壤中無機磷的型態及其重要性 4
二、溶磷微生物之發展研究 6
三、接種溶磷菌對植物的效應 10
(一) 接種溶磷微生物對植物生長的效應 10
(二) 聯合接種溶磷菌與囊叢枝菌根菌對植物之效應 11
(三) 聯合接種溶磷菌與固氮根瘤菌對植物之效應 12
四、溶磷機制之探討 13
(一) 有機酸之分泌 13
(二) 無機酸之分泌 19
(三) 硫化氫之作用 19
(四) 二氧化碳之作用 19
(五) 銨同化作用時所釋出質子的效應 20
參、 材料與方法 22
一、供試溶鈣磷細菌之篩選 22
二、固體鈣磷培養基之配方調整 28
三、Burkholderia cepacia CC-Al74菌株在液體Ca-P-M1培養基中之生理特性研究 28
四、Burkholderia cepacia CC-Al74菌株胞外分泌物之溶磷特性研究 31
五、Burkholderia cepacia CC-Al74菌株在液體Ca-P-M2培養基中之生理特性研究 35
六、Burkholderia cepacia CC-Al74菌株在Ca-P-M2培養基之溶磷物質特性研究 38
七、Burkholderia cepacia CC-Al74菌株主要溶磷物質之收集及分離 39
八、Burkholderia cepacia CC-Al74菌株主要溶磷物質之初步純化 40
九、薄層色層分析法(TLC)及高效液相層析儀(HPLC)分離Burkholderia cepacia CC-Al74菌株之主要溶磷物質 43
十、Burkholderia cepacia CC-Al74菌株主要溶磷物質之分子量分析及推測結構 53
肆、結果與討論 56
一、供試溶鈣磷細菌之篩選 56
二、固體鈣磷培養基之配方調整 56
三、Burkholderia cepacia CC-Al74菌株在液體Ca-P-M1培養基中之生理特性研究 60
四、Burkholderia cepacia CC-Al74菌株胞外分泌物之溶磷特性研究 65
五、Burkholderia cepacia CC-Al74菌株在液體Ca-P-M2培養基中之生理特性研究 72
六、Burkholderia cepacia CC-Al74菌株在Ca-P-M2培養基之溶磷物質特性研究 81
七、Burkholderia cepacia CC-Al74菌株主要溶磷物質之收集及分離 87
八、Burkholderia cepacia CC-Al74菌株主要溶磷物質之初步純化 90
九、薄層色層分析法(TLC)及高效液相層析儀(HPLC)分離Burkholderia cepacia CC-Al74菌株之主要溶磷物質 92
十、Burkholderia cepacia CC-Al74菌株主要溶磷物質之分子量分析及推測結構 121
伍、結論 144
陸、參考文獻 145
1.吳健三。2003。高效液相層析儀-實務篇。建宏層析企業股份有限公司。p. 32, 70-96。
2.吳泓慶。1997。溶磷菌對磷酸鈣溶解機制的探討與Rhizobium tropici檸檬酸合成酵素基因選殖及表現研究。國立中興大學分子生物究所碩士論文。
3.林秋裕。1995。環境工程微生物學。國彰出版社。p. 75-93。
4.林隆清、林孝道、曹汝祥、韓肇中、李茂榮、何國榮、王碧、王作仁、王惠珀、吳淳美、羅初英、凌永漸、江旭禎、楊惠珍、劉邦基。1992。質譜分析術專輯。行政院國家科學委員會精密儀器發展中心。p. 1-16, 87-114。
5.林隆清。1997。實用質譜分析。國立編譯館。p. 31。
6.林淑青。1994。臺灣土生性溶磷細菌對土壤磷有效性及大豆生長之研究。國立中興大學土壤環境科學研究所碩士論文。
7.陳敬明。1997。質譜術應用於黑豆中皂苷類成分之鑑定。國立中興大學化學研究所碩士論文。
8.陳志誠。1997。質譜術應用於四苯基 啉系列化合物之研究。國立中興大學化學研究所碩士論文。
9.陳俊位、蔡宜峰、楊秋忠。1998。內生菌根菌應用在滿天星栽培之研究。臺中區農業改良場研究彙報 58:1-10。
10.陳昱沛。2001。溶磷微生物多樣性及資料庫之建立。國立中興大學土壤環境科學研究所碩士論文。
11.張芝賢。1994。臺灣土生溶鐵磷菌特性之研究。國立中興大學土壤環境科學研究所碩士論文。
12.張淳堂。1992。臺灣土生溶磷細菌之特性研究。國立中興大學土壤環境科學研究所碩士論文。
13.張鳳屏。1991。茶園土壤中囊叢枝菌根菌與溶磷細菌之調查及其應用。國立中興大學土壤研究所碩士論文。
14.張鳳屏、楊秋忠。1992。囊叢枝菌根菌與溶磷細菌對塑膠袋茶樹扦插苗生長之影響。台灣茶業研究彙報 11:79-89。
15.張鳳屏、楊秋忠。1999。磷肥及溶磷細菌對茶樹磷素吸收與茶葉品質之研究。土壤與環境 2:35-44。
16.張治國、楊秋忠、楊耀祥。2001。菌根菌及溶磷菌對蓮霧組培幼苗生長之影響。興大園藝 26(4):1-16。
17.許秋燕。1997。溶磷菌之特性及其接種於玉米根面之效應。國立中興大學土壤環境科學研究所碩士論文。
18.楊秋忠、趙震慶、張永輝。1986。台灣酸性土壤接種菌根菌及施用磷礦石粉對玉米生長之影響。中華農學會報 新136:25-24。
19.楊秋忠。1990。微生物肥料對豆類生產及磷肥吸收之研究。豆類作物土壤與肥培管理研討會專集 217-225。
20.楊秋忠、張淳堂、張鳳屏。1994。溶磷菌的作用及應用研究。微生物肥料之開發及利用研討會專刊。 p. 87-98。
21.楊秋忠、張芝賢、陳立夫、趙震慶。1998。台灣土生固氮溶鐵磷細菌特性之研究。中國農業化學會誌 36:201-210。
22.楊秋忠、洪麗蓉、陳立夫。1998。四種綠肥溶磷根瘤菌的分泌及溶磷特性之研究。土壤與環境 1:7-17。
23.楊秋忠、陳鴻森。1999。利用逢機複制多型性DNA分析測定溶鈣磷細菌之遺傳歧異度。土壤與環境 2:145-158。
24.楊秋忠、黃昭欽、林大發。2000。溶磷菌Pseudomonas cepacia Al-74菌株分解磷酸三鈣的特性研究。中華農學會報 1(2):150-158。
25.劉瑞美、楊秋忠。2001。逢機複製多型性DNA技術分析溶磷與不溶磷根瘤菌的基因親緣性。土壤與環境3:193-204。
26.劉瑞美、楊秋忠。2002。接種溶磷根瘤菌對作物生長與養分吸收之影響。土壤與環境 5:153-164。
27.蔡佳龍。2002。液相層析質譜術於中藥材細辛中微量有毒成分馬兜鈴酸之分析檢測。國立中興大學化學研究所碩士論文。
28.Alagawadi, A.R., and A.C. Gaur. 1998. Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105: 241-246.
29.Ameyama, M., O. Adachi, K. Tayama, E. Shinagawa, and K. Matsushita. 1980. Purifcation and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxydans. Agric. Biol. Chem. 44: 503-515.
30.Arora, D., and C. Gaur. 1979. Microbial solubilization of different inorganic phosphate. India J. Exp. Biol. 17: 1258-1261.
31.Asea, P.E.A., R.M.N. Kucey, and J.W.B. Stewart. 1998. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 20: 459-464.
32.Bajpai, P.D., and W.V.B. Sundara Rao. 1971a. Phosphate solubilizing bacteria. Part Ι. Solubilization of phosphate in liquid culture by selected bacteria as affected by different pH values. Soil Sci. Plant Nutr. 17: 41-43.
33.Bajpai, P.D., and W.V.B. Sundara Rao. 1971b. Phosphate solubilizing bacteria. Part Π. SExtracellular production of organic acid by selected bacteria solubilizing insoluble phosphate. Soil Sci. Plant Nutr. 17: 44-45.
34.Bajpai, P.D., and W.V.B. Sundara Rao. 1971c. Phosphate solubilizing bacteria. Part Ⅲ. Soil inoculated with phosphate solubilizing bacteria. Soil Sci. Plant Nutr. 17: 46-53.
35.Banik, S., and B.K. Dey. 1982. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate - solubilizing microorganisms. Plant Soil 69: 353-364.
36.Baya, A.M., R.S. Boethling, and A. Ramos-cormenzana. 1981. Vitamin production in relation to phosphate solubilization by soil bacteria. Soil Biol. Biochem. 13: 527-531.
37.Beever, R.E., and D.J.W. Burns. 1980. Phosphorus uptake, storage and utilization by fungi. Adv. Bot. Res. 8: 127-219.
38.Bertrand, T., N.A.J. Eady, J.N. Jones, Jesmin, J.M. Nagy, B. Jamart-Gregoires, E.L. Raven, and K.A. Brown. 2004. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J. Biol. Chem. 279(37): 38991-38999.
39.Burlingame, A.L., and S.A. Carr. 1996. Mass spectrometry in the biological sciences. Humana Press Inc. Totowa. p. 365-447.
40.Chhonkar, P.K., and N.S. Subba Rao. 1967. Phosphate solubilization by fungi associated with legume root nodules. Can. J. Microbiol. 13: 749-753.
41.Cieplak, T., and J.L. Wisniewski. 2001. A new effective algorithm for the unambiguous identification of the stereochemical characteristics of compounds during their registration in databases. Molecules 6: 915-926.
42.Collins, P.M. 1987. Carbohydrates. Chapman and Hall Ltd. London. p. 1-513.
43.Datta, M., S. Banik, and R.K. Gupta. 1982. Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus ftrmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil 69: 365-373.
44.Dawson, R.M.C., D.C. Elliott, W.H. Elliott, and K.M. Jones. 1986. Data for Biochemical Research (3rd edition). Clarendon Press, Oxford. p. 1-397.
45.Dissing, N.L., and Eiland. 1980. Investigation of the relationship between P-fertility, phosphatase activity and ATP content in soil. Plant Soil 57: 95-103.
46.Duff, R.B., D.M. Webley, and R.O. Scott. 1963. Solubilization of minerals and related materials by 2-ketoglucomc acid-producing bacteria. Soil Sci. 95:105-114.
47.Duine, J.A. 1991. Quinoproteins: enzymes containing the quinoid cofactor pyrroloquinoline quinine, topaquinone or tryptophan-tryp-tophan quinine. Eur. J. Biochem. 200: 271-284.
48.Fox, T.R., and N.B. Comerford. 1990. Low-molecular-weight organic acid in selected forest soils south- eastern USA. Soil Sci. Soc. Am. J. 54: 1139-1144.
49.Fox, T.R., N.B. Comerford, and W.W. McFee. 1990. Phosphorus and aluminium release from a spodic horizon mediated by organic acids. Soil Sci. Soc. Am. J. 54: 1763-1767.
50.Frigerio, A., and N. Castagnoli. 1974. Advances in mass spectrometry in biochemistry and meducine (vol. 1). Spectrum Publications, Inc. p. 157-170.
51.Gaind, S., and A.C. Gaur. 2002. Impact of fly ash and phosphate solubilizing bacteria on soybean productivity. Biores. Technol. 85: 313- 315.
52.Gerald, D. 1976. Handbook of Biochemistry and Molecular Biology (3rd edition). Vol 1. CRC Press. p. 310.
53.Gerretsen, F.C. 1948. The influence of microorganism on the phosphate intake by the plant. Plant Soil 1: 51-81.
54.Goldstein, A.H. 1986. Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am. J. Alt. Agri. 1: 57-65.
55.Goldstein, A.H., and S.T. Liu. 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biores. Technol. 5: 72-74.
56.Goldstein, A.H., R.D. Robert, and G. Mead. 1993. Mining by microbe. Biores. Technol. 11: 1250-1254.
57.Goldstein, A.H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Bio. Agri. Hort. 12: 185-193.
58.Goldstein, A.H., L. Trevor, and B. Jacquelyn. 2003. Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases. Biochi. Biophysi. Acta. 1647: 266-271.
59.Halder, A.K., A.K. Mishra, P. Bhattacharyya, and P.K. Chakrabartty. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J. Gen. App. Microbil. 36: 81-92.
60.Halder, A.K., and P.K. Chakrabartty. 1993. Solubilization of inorganic phosphate by Rhizobium. Folia. Microbiol. 38: 325-330.
61.Hilda, R., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Advan. 17: 319-339.
62.Hilda, R., T. Gonzalez, and G. Selman. 2000. Expression of a mineral phosphate solubilizing gene from Erwina herbicola in two rhizobacterial strains. J. Biotechnol. 84: 155-161.
63.Horton, H.R., L.A. Moran, R.S. Ochs, J.D. Rawn, and K.G. Scrimgeour. 1996. Principles of Biochemistry (2nd edition). Prentice-Hall International, Inc. p. 79-117.
64.Hsu, F., J. Turk, M.E. Stewart, and D.T. Downing. 2002. Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 13: 680-695.
65.Hwangbo, H., R.D. Park, Y.W. Kim, Y.S. Rim, K.H. Park, T.H. Kim, J.S. Suh, and K.Y. Kim. 2003. 2-ketogluconic acid production and phosphate solubilization by Enterobater intermedium. Curr. Microbil. 47: 87-92.
66.Ii, T., Y. Ohashi, and Y. Nagai. 1995. Structural elucidation of underivatized gangliosides by electrospray-ionization tandem mass spectrometry (ESIMS/MS). Carbohydr. Res. 273: 27-40.
67.Illmer, P., and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated fromforest soil. Soil Biol. Biochem. 24: 389-395.
68.Illmer, P., and F. Schinner. 1995. Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol. Biochem. 27: 257-263.
69.Illmer, P., A. Barbato, and F. Schinner. 1995. Solubilization of hardly- soluble AlPO4 with P-solubilizing microorganisms. Soil Biol. Biochem. 27: 265-270.
70.Imai, K., and S. Mitaku. 2003. Common pattern of coarse-grained charge distribution of structurally analogous proteins. Chem-Bio informatics J. 3: 194-200.
71.Isbelia, R., L. Bernier, R. Simard, P. Tanguay, and H. Antoun. 1999. Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Eco. 28: 291-295.
72.Jurinak, J.J., L.M. Dudley, M.F. Allen, and W.G. Knight. 1986. The role of calcium oxalates in the availability in soils of semiarid regions a thermodynamic study. Soil Science 142: 255-261.
73.Kalsotra, A., C.M. Turman, P.K. Dash, and H.W. Strobel. 2003. Differential effects of traumatic brain injury on the cytochrome P450 system: a perspective into hepatic and renal drug metabolism. J. Neurotrauma 20: 1339-1350.
74.Katznelson, H., and B. Bose. 1959. Metabolic activity and phosphate-dissolving capability of bacterial isolates from wheat roots, and non-rhizosphere soil. Can. J. Microbiol. 5: 79-85.
75.Kim, K.Y., D. Jordan, and G.A. Mcdonald. 1998. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol. Biochem. 30: 995-1003.
76.Kim, K.Y., D. Jordan, and H.B. Krishnan. 1997. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Micro. Let. 153: 273-277.
77.Klejdus, B., J. Moravcova, and V. Kuban. 2003. Reversed-phase high-performance liquid chromatographic/mass spectrometric method for separation of 4-methylimidazole and 2-acetyl-4-(1,2,3,4-tetrahydroxybutyl) imidazole at pg levels. Anal. Chim. Acta 477: 49-58.
78.Kpomblekou-A, K., and M.A. Tabatabai. 1994. Effect of organic acids on release of phosphorus from phosphate rock. Soil Science 158: 442-453.
79.Krishnaraj, P.U., and A.H. Goldstein. 2001. Colony of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Micro. Let. 205: 215-220.
80.Kucey, R.M.N. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin alberta soil. Can. J. Soil. Sci. 63:671-678.
81.Kucey, R.M.N. 1987. Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 35: 661-667.
82.Kucey, R.M.N. 1988. Effect of Penicillium bilaji on the solubility and uptake of P and micronutriens from soil by wheat. Canad. J. Soil Sci. 68: 61-270.
83.Kucey, R.M.N., H.H. Janzen, and M.B. Leggett. 1989. Microbially mediated increase in plant-availability phosphorus. Adv. Agron. 42: 199-228.
84.Kuksis, A., and J.J. Myher. 1995. Application of tandem mass spectrometry for the analysis of long-chain carboxylic acids. J. Chromatogr. B 671: 35-70.
85.Kundu, B.S., and A.C. Gaur. 1980. Establishment of nitrogen-fixing and phosphate-solubilizing bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop. Plant Soil 57: 223-230.
86.Lefebvre, D., V. Gabriel, Y. Vayssier, and C. Fontagne-Faucher. 2002. Simultaneous HPLC determination of sugar, organic acids, and ethanol in sourdough process. Lebensmittel-Wissenschaft und-Technologie 35: 407- 414.
87.Liu, S.T., L.Y. Lee, C.Y. Tai, C.H. Hung, Y.S. Chang, J.H. Wolfram , R. Rogers, and A.H. Goldstein. 1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J. Bacteriol. 174(18): 5814-5819.
88.Louw, H.A., and D.M. Webley. 1958. A plate method for estimating the numbers of phosphate-dissolving and acid producing bacteria in soil. Nature 182: 1317-318.
89.March, R.E., and X. Miao. 2004. A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. Int. J. Mass Spectrom. 231: 157-167.
90.March, R.E., X. Miao, C.D. Metcalfe, M. Stobiecki, and L. Marczak. 2004. A fragmentation study of an isoflavone glycoside, genistein-7-O-glucoside, using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. Int. J. Mass Spectrom. 232: 171-183.
91.McCloskey, J.A. 1990. Methods in enzymology- Mass spectrometry. Academic Press, Inc. London. p. 3-37.
92.Mehta, S., and C.S. Nautiyal. 2001. An efficient Method for Qualitative screening pf phosphate-solubilizing bacteria. Curr. Microbil. 43: 51-56.
93.Miao, X., R.E. March, and C.D. Metcalfe. 2003. A tandem mass spectrometric study of the N-oxides, quinoline N-oxide, carbadox, and olaquindox, carried out at high mass accuracy using electrospray ionization. Int. J. Mass Spectrom. 230: 123-133.
94.Mikanova, O., and J. Novakova. 2002. Evaluation of the P-solubilizing activity of soil microorganisms and its sensitivity to soluble phosphate. Rostl. Vyr. 48: 397-400.
95.Mikanova, O., J. Kubat, T. Simon, K. Vorisek, and D. Randova. 1997. Influence of soluble phosphate on P-solubilizing activity of bacteria. Rostlinna-Vyroba-UZPI 43: 421-424.
96.Moghimi, A., M.E. Tate, and J.M. Oades. 1978. Characterization of rhizosphere products especially 2-ketoglucomc acid. Soil Biol. Biochem. 10:283-287.
97.Molla, M.A.Z., A.A Chowdhury, A. Islam, and S. Hoque. 1984. Microbial mineralization of organic phosphate in soil. Plant Soil 78: 393-399.
98.Mujeebur, R.K., and M.K. Shahana. 2002. Effect of root-dip treatment with certain phosphate solubilizing microorganisms on the fusarial wilt of tomato. Biores. Techol. 85: 213-215.
99.Musson, J.A., N. Walker, H. Flick-Smith, E.D. Williamson, and J.H. Robinson. 2003. Differential processing of CD4 T-cell epitopes from the protective antigen of Bacillus anthracis. J. Biol. Chem. 278(52): 52425-52431.
100.Narsian, V., and H.H. Patel. 2000. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Bio. Biochem. 32: 559-565.
101.Oleszek, W.A. 2002. Chromatographic determination of plant saponins. J. Chromatogr. A 967: 147-162.
102.Peix, A., A.A. Rivas-Boyero, P.F. Mateos, C. Rodirguez-Barrueco, E. Martinez-Molina, and E. Velazquez. 2002. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Bio. Biochem. 33 (1): 103-110.
103.Phenomenex. Chromatography columns and supplies 04/05 catalog. Phenomenex Inc. USA. p. 76.
104.Piccini, D., and R. Azcon. 1987. Effect of phosphate-solubilizing bacteria and vescular-arbuscular mycorrhiza fungi on the utilization of Bayovar rock phosphate by alfafa plants using a sand-vermiculate medium. Plant Soil 101: 45-50.
105.Ralston, D.B., and R.P. Mcbride. 1976. Interaction of mineral phosphate-dissolving microbes with red pine seeding. Plant Soil 45: 493-507.
106.Reyes, I., L. Bernier, R. Simard, and H. Antoun. 1999. Effect of nitrogen source on solubilization of differenct inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Micro. Eco. 28: 281-290.
107.Saber, M.S.M., M. Yousry, and M. Kabesh. 1977. Effect of manganese application on the activity of phosphate-dissolving bacteria in a calcareous soil cultivated with pea plants. Plant Soil 45: 493-507.
108.Sadek, P. 2002. The HPLC solvent guide (2nd edition). A John Wiley & Sons , Inc. p.1-44.
109.Schneider, G., and J. Schmidt. 1996. Liquid chromatography-electrospry ionization mass spectrometry for analyzing plant hormone conjugates. J. Chromatogr. A 728: 371-375.
110.Shekhar, C. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Micro. Let. 170: 265-270.
111.Shekhar, N.C., S. Bhaclauriay, P. Kumar, H. Lal, R. Mondal, and D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Let. 182, 291-296.
112.Shu, P.Y., and C.H. Lin. 2002. Simple and sensitive GC-selected ion monitoring mass spectrometry for the determination of citrinin in monascus. Anal. Sci. 18: 1-5.
113.Smyth, W.F. 2003. Electrospray ionization mass spectrometric behaviour of selected drugs and their metabolites. Anal. Chim. Acta 492: 1-16.
114.Sperber, J.I. 1958. Solution of mineral phosphate by soil bacteria. Nature 180: 994-995.
115.Stoll, T., A. Schieber, and R. Carle. 2002. High-performance liquid chromatographic separation and on-line mass spectrometric detection of saturated and unsaturated oligogalacturonic acids. Carbohydr. Res. 337: 2481-2486.
116.Strege, M. 1999. High-performance liquid chromatographic-electrospray ionization mass spectrometric analyses for the untegration of natural products with modern high-throughput screening. J. Chromatogr. B 725: 67-78.
117.Struthers, P.H., and G.H. Seiling. 1960. Effect of organic anions on phosphate precipitation by iron and aluminum as influenced by pH. Soil Sci. 69:205-213.
118.Subba Rao, N.S. 1982. Biofertilizers in agriculture. New Delhi. p. 129-136.
119.Sundara, B.V., and K.H. Natarajan. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 77: 43-49.
120.Sudhakara, R.M., S. Kumar, K. Babita, and M.S. Reddy. 2002. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Biores. Technol. 84: 187-189.
121.Traina, S.J., G. Sposito, D. Hesterberg, and U. Kafkafi. 1986. Effects of pH and organic acids on orthophosphate solubility in an acidic, montmorillonitic soil. Soil Sci. Soc. Am. J. 50:45-52.
122.Taha, S.M., S.A.Z. Mahmoud, A.H. El-Damaty, and A.M.A. El-Hafez. 1969. Activity of phosphate dissolving bacteria in Egyptian soil. Plant Soil 31: 149-160.
123.Traina, S.J., G. Sposito, D. Hesterberg, and U. Kafkafi. 1986. Effects of pH and organic acids on orthophosphate solubility in an acidic, montmorillonitic soil. Soil Sci. Soc. Am. J. 50: 45-52.
124.Viverk, K., and K.P. Singh. 2001. Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Biores. Technol. 76: 173-175.
125.Tolstikov, V., and O. Fiehn. 2002. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem. 301: 298- 307.
126.Wang, H., and C. Dass. 2002. Characterization of bioactive peptides in bovine adrenal medulla by a combination of fast HPLC and ESI-MS. Peptides. 23: 2143 -2150.
127.Watanable, F.S., and S.R. Olsen. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. Proc. 29: 677-678.
128.Watson, J.T. 1997. Introduction to mass spectrometry (3rd edition). Lippincott-Raven Publishers. New York. p. 1-47, 146-147.
129.Willems, A., and M.D. Collins. 1993. Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 43(2): 305-313.
130.Wongtrakul, J., I. Sramala, and A.J. Ketterman. 2003. A non-active site residue, cyctein 69, of glutathione s-transferase adgstd3-3 has a role in stability and catalytic function. Prot. Pep. Let. 10: 371-385.
131.Young, C. C., T. C. Juang, and H. Y. Guo. 1984. Evidence for VA mycoorrhiza enhanced uptake of fixed soil phosphates. Soil and Fertilizers in Taiwan 1984:1-5.
132.Young, C.C., T.C. Juanag, and H.Y. Guo. 1986. Vesicular-arbuscular mycorrhiza inoculation on soybean yield and mineral phosphorus utilization in subtropical-tropical Soils. Plant Soil 95: 245-254.
133.Young, C. C., J. Y. Chang and C. C. Chao. 1988a. Physiological and symbiotic characteristics of Rhizobium fredii isolated from subtropical-tropical soils. Biology and Fertility of Soils 5:350-354.
134.Young, C. C., T. C. Juang, and C. C. Chao. 1988b. Effects of Rhizobium and VA mycorrhiza inoculations on nodulation, symbiotic nitrogen fixation, and yield of soybean in subtropical-tropical fields. Biology and Fertility of Soils 6:165-169.
135.Young, C. C., C. L. Chen and C. C. Chao. 1990. Effect of Rhizobium, VA mycorrhiza and phosphate solubilizing bacteria on yield and mineral phosphate uptake on crops in subtropical-tropical soils. 14th International congress of soil Science. Symposium session of Commission Ⅲ: 55-60.
136.Young, C.C. 1990. Effects of phosphorus-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the growth of tree species in subtropical-tropical soils. Soil Sci. Plant Nutri. 36: 225-231.
137.Young, C. C. 1992. Selection and application of rhizobia, VA mycorrhiza and P-solubilizing microorganisms for trees in Taiwan soils. Proceedings of the Joint International Symposium Air Pollution, Soil Microbiology and Biotechnology of Forestry. p. 129-141.
138.Young, C. C. 1994. Selection and application of biofertilizers in Taiwan. Food & Fertilizer Technology Center, Technical Bulletin 141:1-9.
139.Young, C.C., F.T. Shen., W.A. Lai., M.H. Hung., W.S. Huang., A.B. Arun. and H.L. Lu. 2003. Biochemical and molecular characterization of phosphate solubilizing bacteria from Taiwan soil. 2nd International Symposium on Phosphorus Dynamics in the Soil-Plant Continuum. p. 44-45.
140.Zhu, J., and Z. Shi. 2003. ESI-MS studies of polyether surfactant behaviors in reversed-phase HPLC system. Mass Spectrom. 226: 369-378.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔